Reputation: 5985
Let's say I have the following pandas date_range
:
rng = pd.date_range('9/1/2017', '12/31/2017')
I want to get a list of the unique months. This is what I've come up with so far but there has to be a better way:
df = pd.DataFrame({'date': rng})
months = df.groupby(pd.Grouper(key='date', freq='M')).agg('sum').index.tolist()
formatted_m = [i.strftime('%m/%Y') for i in months]
# ['09/2017', '10/2017', '11/2017', '12/2017']
Note the dates will be stored in a DataFrame column or index.
Upvotes: 4
Views: 6710
Reputation: 198
I usually use this one and I think it's quite straightforward:
rng.month.unique()
Edit: Probably not relevant any longer, but just for the sake of completeness:
set([str(year)+str(month) for year , month in zip(rng.year,rng.month)])
Upvotes: 0
Reputation: 323316
Do not need to build the df
(rng.year*100+rng.month).value_counts().index.tolist()
Out[861]: [201712, 201710, 201711, 201709]
Updated :
set((rng.year*100+rng.month).tolist())
Out[865]: {201709, 201710, 201711, 201712}
Upvotes: 1
Reputation: 863056
Use numpy.unique
because DatetmeIndex.strftime
return numpy array
:
rng = pd.date_range('9/1/2017', '12/31/2017')
print (np.unique(rng.strftime('%m/%Y')).tolist())
['09/2017', '10/2017', '11/2017', '12/2017']
If input is column of DataFrame
use Anton vBR's solution:
print(df['date'].dt.strftime("%m/%y").unique().tolist())
Or drop_duplicates
:
print(df['date'].dt.strftime("%m/%y").drop_duplicates().tolist())
Timings:
All solution have same performance - unique vs drop_duplicates:
rng = pd.date_range('9/1/1900', '12/31/2017')
df = pd.DataFrame({'date': rng})
In [54]: %timeit (df['date'].dt.strftime("%m/%y").unique().tolist())
1 loop, best of 3: 469 ms per loop
In [56]: %timeit (df['date'].dt.strftime("%m/%y").drop_duplicates().tolist())
1 loop, best of 3: 466 ms per loop
Upvotes: 9
Reputation: 18916
Yes or this:
df['date'].dt.strftime("%m/%y").unique().tolist()
#['09/17', '10/17', '11/17', '12/17']
Upvotes: 5