Reputation: 826
I have the following design: - one class A that has a protected member of class M. - one class B that inherits from A and has a pointer to an object of class C - one class C that needs to have access to the member of the class A
class A {
public:
A() : _member(0) {}
~A() { delete _member }
protected:
M _member;
}
class B : public A {
public:
B(){}
~B(){}
protected:
C* c;
}
class C {
// C needs to have access to _member
}
What design should be more appropriate to solve this issue ?
Upvotes: 0
Views: 49
Reputation: 1746
In pure OO terms, allowing a class to directly access the internal fields of another class is bad practice.
That said, C++ is not a pure OO language, and does allow for this (among other important deviations from OO).
To allow access to a private member to another class, you must designate that class to be a friend. Friendship, however is not passed to derived classes, therefore you must upcast the class to the type you need.
This is your simplest solution:
class A {
public:
A() : _member(0) {}
~A() { delete _member }
protected:
friend class C;
M _member;
}
class B : public A {
public:
B(){ c = new C(this); } // this call will cast the B* to an A* (important)
~B(){ delete c;}
protected:
C* c;
}
class C {
public:
C(A* a) { _a->_member = new M(); } //Now C can directly access _member in A
}
In such a way, any object derived from A
can be turned back into an A*
and used to access _member
.
However, as previously stated, any classes derived from C will not gain access to _member
, as friendship is not inherited, so a more comprehensive solution is required:
class M {
public:
void Foo() { printf("Foo called\n"); }
};
class A {
M* m;
friend class C;
public:
A():m(0) { ; }
};
class B :public A {
int id;
public:
B() { id = 0; }
};
class C {
public:
C() { _a = 0; }
C(A* a) { _a = a; }
protected:
M* getM() { return _a->m; }
void setM(M* m_) { _a->m = m_; }
private:
A* _a;
};
class D : public C {
public:
D(B* b): C(b) {
}
void Foo() {
setM(new M());
getM()->Foo();
delete getM();
setM(nullptr);
}
};
int main()
{
B* b = new B();
D d(b);
d.Foo();
delete b;
getchar();
return 0;
}
In this way, no classes derived from A provide direct access to _member, and no classes derived from C have direct access, but the member variable can still be accessed via C's protected API. This also prevents other external objects accessing it.
Upvotes: 1
Reputation: 234865
Make C
a friend
of A
:
class A {
friend class C;
/*and so on*/
Then C
can see all member variables and functions in A
, even if they are private
.
Upvotes: 1