Reputation: 17873
I am runnign a set of rules against the my java itemObjects. For each item, I am processing the list of the rules.
Normally I have 1 million items and 100 rules.
Currently running this program in spark is taking 15 mins.
I observed that faltMaptopair
is taking more time. I want to improve the performance of this program.
Get the rules
map each item against the list of rules and produce result set
return JavaPairRDD of itemId and List<RuleResult>
Any suggestions of refactor this code to improve performance further
I have written the following code.
public JavaPairRDD<String, List<RuleResult>> validate() {
List<ExecutableRule<T>> rules = ruleWrapper.getRulesList().collect();
JavaPairRDD<String, List<RuleResult>> resultsPairRDD = itemsForValidation
.map(x -> getRulesResult(rules, x))
.flatMapToPair(this::mapToRuleResultById)
.aggregateByKey(
MapperUtil.<RuleResult>newList(),
MapperUtil::addToList,
MapperUtil::combineLists
);
return resultsPairRDD;
}
private List<Tuple2<String, RuleResult>> mapToRuleResultById(List<RuleResult> ruleResults) {
return ruleResults.stream()
.map(ruleResult -> new Tuple2<>(ruleResult.getItemId(), ruleResult))
.collect(toList());
}
private List<RuleResult> getRulesResult(List<ExecutableRule<T>> rules, T x) {
return rules.stream()
.map(rule -> rule.execute(x)).collect(toList());
}
public RuleResult execute(T t){
//get the rule result
}
public class RuleResult{
private String itemId;
}
Upvotes: 0
Views: 613
Reputation: 13154
Maybe I'm misunderstanding something, but I don't see the need for neither the flatMap
or the aggregateByKey
.
public JavaPairRDD<String, List<RuleResult>> validate() {
List<ExecutableRule<T>> rules = ruleWrapper.getRulesList().collect();
JavaPairRDD<String, List<RuleResult>> resultsPairRDD = itemsForValidation
.map(x -> new Tuple2<>(x, getRulesResult(rules, x)));
return resultsPairRDD;
}
Will that not work?
Upvotes: 1