CuriousLearner
CuriousLearner

Reputation: 401

How to select ONLY THE INDEX COLUMNS in a pandas multi-index Dataframe?

Okay, so I have a DataFrame with a 2 column index, and I am trying to filter the rows from that DataFrame and keep ONLY THE INDEX COLUMNS of the original dataframe into the new filtered DataFrame.

I created the dataframe from a CSV file by: Find the CSV file here

census_df = pd.read_csv("census.csv", index_col = ["STNAME", "CTYNAME"])
census_df.sort_index(ascending = True)

Then, I applied some filtering to the DataFrame, which works perfectly fine, and I get the desired rows. The code I used is shown below:

def my_answer():

    mask1 = census_df["REGION"].between(1, 2)
    mask2 = census_df.index.get_level_values("CTYNAME").str.startswith("Washington")
    mask3 = (census_df["POPESTIMATE2015"] > census_df["POPESTIMATE2014"])
    new_df = census_df[mask1 & mask2 & mask3]
    return pd.DataFrame(new_df.iloc[:, -1])

my_answer()

Here is the problem:

The above code returns a dataframe with the index AND the first column IN ADDITION to the 2 index columns. What I want is JUST THE TWO INDEX COLUMNS. So, the final answer should return a DATAFRAME, with "STNAME" and "CTYNAME", with 5 rows in it.

Upvotes: 5

Views: 26444

Answers (2)

Hermes Morales
Hermes Morales

Reputation: 637

Using list comprehension:

def my_answer():
     mask1 = census_df["REGION"].between(1, 2)
     mask2 = census_df.index.get_level_values("CTYNAME").str.startswith("Washington")
     mask3 = (census_df["POPESTIMATE2015"] > census_df["POPESTIMATE2014"])
     new_df = census_df[mask1 & mask2 & mask3]

     return pd.DataFrame([new_df.index[x] for x in range(len(new_df))])    

my_answer()

Output:

    0              1
 0  Iowa         Washington County
 1  Minnesota    Washington County
 2  Pennsylvania Washington County
 3  Rhode Island Washington County
 4  Wisconsin    Washington County``

Upvotes: 1

jezrael
jezrael

Reputation: 862641

You can convert index to DataFrame:

def my_answer():

    mask1 = census_df["REGION"].between(1, 2)
    mask2 = census_df.index.get_level_values("CTYNAME").str.startswith("Washington")
    mask3 = (census_df["POPESTIMATE2015"] > census_df["POPESTIMATE2014"])
    new_df = census_df[mask1 & mask2 & mask3]
    return pd.DataFrame(new_df.index.tolist(), columns=['STNAME','CTYNAME'])

print (my_answer())

         STNAME            CTYNAME
0          Iowa  Washington County
1     Minnesota  Washington County
2  Pennsylvania  Washington County
3  Rhode Island  Washington County
4     Wisconsin  Washington County

If want output as MultiIndex need MultiIndex.remove_unused_levels, but it working in pandas 0.20.0+:

def my_answer():

    mask1 = census_df["REGION"].between(1, 2)
    mask2 = census_df.index.get_level_values("CTYNAME").str.startswith("Washington")
    mask3 = (census_df["POPESTIMATE2015"] > census_df["POPESTIMATE2014"])
    new_df = census_df[mask1 & mask2 & mask3]
    return new_df.index.remove_unused_levels()

print (my_answer())

MultiIndex(levels=[['Iowa', 'Minnesota', 'Pennsylvania', 'Rhode Island', 'Wisconsin'], 
                   ['Washington County']],
           labels=[[0, 1, 2, 3, 4], [0, 0, 0, 0, 0]],
           names=['STNAME', 'CTYNAME'])

Upvotes: 0

Related Questions