Reputation: 46745
In Ocatave / Matlab, I can use magic()
to get a magic square, e.g.,
magic(4)
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
Definition: A magic square is an N×N grid of numbers in which the entries in each row, column and main diagonal sum to the same number (equal to N(N^2+1)/2
).
How can I generate the same using NumPy?
Upvotes: 13
Views: 15625
Reputation: 11
I had the same issue, this is what I used:
import numpy as np
matrix = np.random.random((15,15))
for x in range(15):
for y in range(15):
matrix[x][y] = int(matrix[x][y]*10)
I needed integers between 0 and 10, but you get the idea...
Upvotes: 1
Reputation:
This implementation follows Matlab's and should give exactly the same results with the following exception: it throws an error if n < 3 rather than return a non-magic square [[1, 3], [4, 2]]
when n=2 like Matlab does.
As usual, there are three cases: odd, divisible by 4, and even but not divisible by 4, the last one being the most complicated.
def magic(n):
n = int(n)
if n < 3:
raise ValueError("Size must be at least 3")
if n % 2 == 1:
p = np.arange(1, n+1)
return n*np.mod(p[:, None] + p - (n+3)//2, n) + np.mod(p[:, None] + 2*p-2, n) + 1
elif n % 4 == 0:
J = np.mod(np.arange(1, n+1), 4) // 2
K = J[:, None] == J
M = np.arange(1, n*n+1, n)[:, None] + np.arange(n)
M[K] = n*n + 1 - M[K]
else:
p = n//2
M = magic(p)
M = np.block([[M, M+2*p*p], [M+3*p*p, M+p*p]])
i = np.arange(p)
k = (n-2)//4
j = np.concatenate((np.arange(k), np.arange(n-k+1, n)))
M[np.ix_(np.concatenate((i, i+p)), j)] = M[np.ix_(np.concatenate((i+p, i)), j)]
M[np.ix_([k, k+p], [0, k])] = M[np.ix_([k+p, k], [0, k])]
return M
I also wrote a function to test this:
def test_magic(ms):
n = ms.shape[0]
s = n*(n**2+1)//2
columns = np.all(ms.sum(axis=0) == s)
rows = np.all(ms.sum(axis=1) == s)
diag1 = np.diag(ms).sum() == s
diag2 = np.diag(ms[::-1, :]).sum() == s
return columns and rows and diag1 and diag2
Try [test_magic(magic(n)) for n in range(3, 20)]
to check the correctness.
Upvotes: 9
Reputation: 3106
Here are a quick implementation for odd and doubly even cases.
def magic_odd(n):
if n % 2 == 0:
raise ValueError('n must be odd')
return np.mod((np.arange(n)[:, None] + np.arange(n)) + (n-1)//2+1, n)*n + \
np.mod((np.arange(1, n+1)[:, None] + 2*np.arange(n)), n) + 1
def magic_double_even(n):
if n % 4 != 0:
raise ValueError('n must be a multiple of 4')
M = np.empty([n, n], dtype=int)
M[:, :n//2] = np.arange(1, n**2//2+1).reshape(-1, n).T
M[:, n//2:] = np.flipud(M[:, :n//2]) + (n**2//2)
M[1:n//2:2, :] = np.fliplr(M[1:n//2:2, :])
M[n//2::2, :] = np.fliplr(M[n//2::2, :])
return M
Odd case is from here and I got the rest from How to construct magic squares of even order. Then I got lazy for the single even case but the idea is the similar.
Upvotes: 1