Powege
Powege

Reputation: 715

Average row and it's previous row in a data.frame

I have written the following function in R to calculate the two-day mean VARs of each date and previous day for a dataframe with the column names DATE (YYYY-MM-DD), ID, VAR1, and VAR2. There are no missing dates.

df <- data.frame

TWODAY <- function(df){

df$TWODAY_VAR1 <- NA
for(j in 2:length(df$VAR1)){
df$TWODAY_VAR1[j] <- mean(df$VAR1[j:(j-1)])
 }

df$TWODAY_VAR2 <- NA
for(j in 2:length(df$VAR2)){
df$TWODAY_VAR2[j] <- mean(df$VAR2[j:(j-1)])
}

return(df)
}

I then applied this function to my dataframe with ddply:

df <- ddply(df, "ID", TWODAY)

However, my dataframe consists of over 13,000,000 observations, and this is running very slow. Does anyone have any recommendations of how I could edit my code to make it more efficient?

Any advice would be greatly appreciated!

Upvotes: 1

Views: 146

Answers (2)

pogibas
pogibas

Reputation: 28339

Solution using rowMeans:

nRow <- 13e6
df <- data.frame(VAR1 = rnorm(nRow),
                 VAR2 = rnorm(nRow))
df$TWODAY_VAR1 <- rowMeans(cbind(df$VAR1, c(NA, df$VAR1[-nrow(df)])))
df$TWODAY_VAR2 <- rowMeans(cbind(df$VAR2, c(NA, df$VAR2[-nrow(df)])))

cbind two vectors cbind(df$VAR1, c(df$VAR1[-1], NA) (NA for last row) and apply rowMeans.

Upvotes: 2

LAP
LAP

Reputation: 6685

A manual vectorization:

FOO <- function(x){
  c(NA, (x[2:length(x)]+x[1:(length(x)-1)])/2)
}

Example:

set.seed(123)
df <- data.frame(VAR1 = rnorm(10000), VAR2 = runif(10000))

> head(df)
         VAR1      VAR2
1 -0.56047565 0.9911234
2 -0.23017749 0.3022307
3  1.55870831 0.4337590
4  0.07050839 0.1605209
5  0.12928774 0.8230267
6  1.71506499 0.2080906

df$TWODAY_VAR1 <- FOO(df$VAR1)
df$TWODAY_VAR2 <- FOO(df$VAR2)

> head(df)
         VAR1      VAR2 TWODAY_VAR1 TWODAY_VAR2
1 -0.56047565 0.9911234          NA          NA
2 -0.23017749 0.3022307 -0.39532657   0.6466770
3  1.55870831 0.4337590  0.66426541   0.3679948
4  0.07050839 0.1605209  0.81460835   0.2971400
5  0.12928774 0.8230267  0.09989806   0.4917738
6  1.71506499 0.2080906  0.92217636   0.5155586

This should be pretty fast even with 13 Million rows. One Million rows takes a fracture of a second for me.


Benchmark for a single variable with 13.000.000 rows:

> b
Unit: seconds
                           expr      min       lq      mean    median        uq       max neval
 df$TWODAY_VAR1 <- FOO(df$VAR1) 0.182657 0.209106 0.2308234 0.2175971 0.2239455 0.3119504    10

Upvotes: 3

Related Questions