Reputation: 192
In a graph with a bunch of normal nodes and a few special marked nodes, is there a common algorithm to find the closest marked node from a given starting position in the graph?
Or is the best way to do a BFS search to find the marked nodes and then doing Dijkstra's on each of the discovered marked nodes to see which one is the closest?
Upvotes: 3
Views: 2644
Reputation: 17945
This depends on the graph, and your definition of "closest".
If you compute "closest" ignoring edge weights, or your graph has no edge weights, a simple breadth-first search (BFS) will suffice. The first node reached vía BFS is, by definition of BFS, the closest (or, if there are several closest nodes, tied for closeness). If you keep track of the number of expanded BFS levels, you can locate all closest nodes by reaching the end of the level instead of stopping as soon as you find the first marked node.
If you have edge weights, and need to use them in your computation, use Dijkstra instead. If the edges can have negative weights, and there happen to be any negative cycles, then you will need to instead use Bellman-Ford.
As mentioned by SaiBot, if the start node is always the same, and you will perform several queries with changing "marked" nodes, there are faster ways to do things. In particular, you can store in each node the "parent" found in a first full traversal, and the node's distance to the start node. When adding a new batch of k marked nodes, you would immediately know the closest to the start by looking at this distance for each marked node.
Upvotes: 3
Reputation: 3745
The fastest way would be to perform Dijkstra right away from your starting position (starting node). When "closeness" is defined as the number of edges that have to be traversed, you can just assign a weight of 1 to each edge. In case precomputation is allowed there will be faster ways to do it.
Upvotes: 1