Reputation: 99
I need to "extract" some data contained in an Iterable[MyObject] (it was a RDD[MyObject] before a groupBy).
My initial RDD[MyObject] :
|-----------|---------|----------|
| startCity | endCity | Customer |
|-----------|---------|----------|
| Paris | London | ID | Age |
| | |----|-----|
| | | 1 | 1 |
| | |----|-----|
| | | 2 | 1 |
| | |----|-----|
| | | 3 | 50 |
|-----------|---------|----------|
| Paris | London | ID | Age |
| | |----|-----|
| | | 5 | 40 |
| | |----|-----|
| | | 6 | 41 |
| | |----|-----|
| | | 7 | 2 |
|-----------|---------|----|-----|
| New-York | Paris | ID | Age |
| | |----|-----|
| | | 9 | 15 |
| | |----|-----|
| | | 10| 16 |
| | |----|-----|
| | | 11| 46 |
|-----------|---------|----|-----|
| New-York | Paris | ID | Age |
| | |----|-----|
| | | 13| 7 |
| | |----|-----|
| | | 14| 9 |
| | |----|-----|
| | | 15| 60 |
|-----------|---------|----|-----|
| Barcelona | London | ID | Age |
| | |----|-----|
| | | 17| 66 |
| | |----|-----|
| | | 18| 53 |
| | |----|-----|
| | | 19| 11 |
|-----------|---------|----|-----|
I need to count them by age range by and groupBy startCity - endCity
The final result should be :
|-----------|---------|-------------|
| startCity | endCity | Customer |
|-----------|---------|-------------|
| Paris | London | Range| Count|
| | |------|------|
| | |0-2 | 3 |
| | |------|------|
| | |3-18 | 0 |
| | |------|------|
| | |19-99 | 3 |
|-----------|---------|-------------|
| New-York | Paris | Range| Count|
| | |------|------|
| | |0-2 | 0 |
| | |------|------|
| | |3-18 | 3 |
| | |------|------|
| | |19-99 | 2 |
|-----------|---------|-------------|
| Barcelona | London | Range| Count|
| | |------|------|
| | |0-2 | 0 |
| | |------|------|
| | |3-18 | 1 |
| | |------|------|
| | |19-99 | 2 |
|-----------|---------|-------------|
At the moment I'm doing this by count 3 times the same data (first time with 0-2 range, then 10-20, then 21-99).
Like :
Iterable[MyObject] ite
ite.count(x => x.age match {
case Some(age) => { age >= 0 && age < 2 }
}
It's working by giving me an Integer but not efficient at all I think since I have to count many times, what's the best way to do this please ?
Thanks
EDIT : The Customer object is a case class
Upvotes: 1
Views: 1029
Reputation: 41987
Assuming that you have Customer[Object]
as a case class
as below
case class Customer(ID: Int, Age: Int)
And your RDD[MyObject]
is a rdd
of case class
as below
case class MyObject(startCity: String, endCity: String, customer: List[Customer])
So using above case class
es you should be having input (that you have in table format) as below
MyObject(Paris,London,List(Customer(1,1), Customer(2,1), Customer(3,50)))
MyObject(Paris,London,List(Customer(5,40), Customer(6,41), Customer(7,2)))
MyObject(New-York,Paris,List(Customer(9,15), Customer(10,16), Customer(11,46)))
MyObject(New-York,Paris,List(Customer(13,7), Customer(14,9), Customer(15,60)))
MyObject(Barcelona,London,List(Customer(17,66), Customer(18,53), Customer(19,11)))
And you've also mentioned that after grouping you have Iterable[MyObject]
which is equivalent to below step
val groupedRDD = rdd.groupBy(myobject => (myobject.startCity, myobject.endCity)) //groupedRDD: org.apache.spark.rdd.RDD[((String, String), Iterable[MyObject])] = ShuffledRDD[2] at groupBy at worksheetTest.sc:23
So the next step for you to do is to use mapValues
to iterate through the Iterable[MyObject]
, and then count the age
s belonging to each ranges, and finally converting to the output you require as below
val finalResult = groupedRDD.mapValues(x => {
val rangeAge = Map("0-2" -> 0, "3-18" -> 0, "19-99" -> 0)
val list = x.flatMap(y => y.customer.map(z => z.Age)).toList
updateCounts(list, rangeAge).map(x => CustomerOut(x._1, x._2)).toList
})
where updateCounts
is a recursive function
def updateCounts(ageList: List[Int], map: Map[String, Int]) : Map[String, Int] = ageList match{
case head :: tail => if(head >= 0 && head < 3) {
updateCounts(tail, map ++ Map("0-2" -> (map("0-2")+1)))
} else if(head >= 3 && head < 19) {
updateCounts(tail, map ++ Map("3-18" -> (map("3-18")+1)))
} else updateCounts(tail, map ++ Map("19-99" -> (map("19-99")+1)))
case Nil => map
}
and CustomerOut
is another case class
case class CustomerOut(Range: String, Count: Int)
so the finalResult
is as below
((Barcelona,London),List(CustomerOut(0-2,0), CustomerOut(3-18,1), CustomerOut(19-99,2)))
((New-York,Paris),List(CustomerOut(0-2,0), CustomerOut(3-18,4), CustomerOut(19-99,2)))
((Paris,London),List(CustomerOut(0-2,3), CustomerOut(3-18,0), CustomerOut(19-99,3)))
Upvotes: 1
Reputation: 10406
def computeRange(age : Int) =
if(age<=2)
"0-2"
else if(age<=10)
"2-10"
// etc, you get the idea
Then, with an RDD of case class MyObject(id : String, age : Int)
rdd
.map(x=> computeRange(x.age) -> 1)
.reduceByKey(_+_)
Edit: If you need to group by some columns, you can do it this way, provided that you have a RDD[(SomeColumns, Iterable[MyObject])]. The following lines would give you a map that associates each "range" to its number of occurences.
def computeMapOfOccurances(list : Iterable[MyObject]) : Map[String, Int] =
list
.map(_.age)
.map(computeRange)
.groupBy(x=>x)
.mapValues(_.size)
val result1 = rdd
.mapValues( computeMapOfOccurances(_))
And if you need to flatten your data, you can write:
val result2 = result1
.flatMapValues(_.toSeq)
Upvotes: 2