Reputation: 1438
This is a follow up to Coq equality implementation (though this question is self-contained).
I have a simple inductive type of trees (t
) with a fixed set of tags (arityCode
), each with a fixed number of children. I have a type (path
) of paths into a tree. I'm trying to implement some manipulations. In particular, I want to be able to move a cursor around in a few directions. This seems pretty straightforward, but I'm running into a roadblock.
This is all in the code, but a quick explanation of where I'm stuck: To construct a there
path, I need to produce a path (Vector.nth v i)
(a path in one of the children). But the only path
constructors (here
and there
) produce a path (Node c v)
. So in some sense I need to show the compiler that a path simultaneously has type path (Node c v)
and path (Vector.nth v i)
, but Coq is not clever enough to compute (Vector.nth children fin_n)
-> Node c v
. How can I convince it that this is okay?
Require Coq.Bool.Bool. Open Scope bool.
Require Coq.Strings.String. Open Scope string_scope.
Require Coq.Arith.EqNat.
Require Coq.Arith.PeanoNat. Open Scope nat_scope.
Require Coq.Arith.Peano_dec.
Require Coq.Lists.List. Open Scope list_scope.
Require Coq.Vectors.Vector. Open Scope vector_scope.
Require Fin.
Module Export LocalVectorNotations.
Notation " [ ] " := (Vector.nil _) (format "[ ]") : vector_scope.
Notation " [ x ; .. ; y ] " := (Vector.cons _ x _ .. (Vector.cons _ y _ (Vector.nil _)) ..) : vector_scope.
Notation " [ x ; y ; .. ; z ] " := (Vector.cons _ x _ (Vector.cons _ y _ .. (Vector.cons _ z _ (Vector.nil _)) ..)) : vector_scope.
End LocalVectorNotations.
Module Core.
Module Typ.
Set Implicit Arguments.
Inductive arityCode : nat -> Type :=
| Num : arityCode 0
| Hole : arityCode 0
| Arrow : arityCode 2
| Sum : arityCode 2
.
Definition codeEq (n1 n2 : nat) (l: arityCode n1) (r: arityCode n2) : bool :=
match l, r with
| Num, Num => true
| Hole, Hole => true
| Arrow, Arrow => true
| Sum, Sum => true
| _, _ => false
end.
Inductive t : Type :=
| Node : forall n, arityCode n -> Vector.t t n -> t.
Inductive path : t -> Type :=
| Here : forall n (c : arityCode n) (v : Vector.t t n), path (Node c v)
| There : forall n (c : arityCode n) (v : Vector.t t n) (i : Fin.t n),
path (Vector.nth v i) -> path (Node c v).
Example node1 := Node Num [].
Example children : Vector.t t 2 := [node1; Node Hole []].
Example node2 := Node Arrow children.
(* This example can also be typed simply as `path node`, but we type it this way
to use it as a subath in the next example.
*)
Example here : path (*node1*) (Vector.nth children Fin.F1) := Here _ _.
Example there : path node2 := There _ children Fin.F1 here.
Inductive direction : Type :=
| Child : nat -> direction
| PrevSibling : direction
| NextSibling : direction
| Parent : direction.
Fixpoint move_in_path
(node : t)
(dir : direction)
(the_path : path node)
: option (path node) :=
match node with
| @Node num_children code children =>
match the_path with
| There _ _ i sub_path => move_in_path (Vector.nth children i) dir sub_path
| Here _ _ =>
match dir with
| Child n =>
match Fin.of_nat n num_children with
| inleft fin_n =>
(* The problem:
The term "Here ?a@{n0:=n; n:=n0} ?t@{n0:=n; n:=n0}" has type
"path (Node ?a@{n0:=n; n:=n0} ?t@{n0:=n; n:=n0})" while it is expected to have type
"path (Vector.nth children fin_n)".
How can I convince Coq that `Vector.nth children fin_n`
has type `path (Node a t)`?
*)
let here : path (Vector.nth children fin_n) := Here _ _ in
let there : path node := There _ children fin_n here in
Some there
| inright _ => None
end
| _ => None (* TODO handle other directions *)
end
end
end.
End Typ.
End Core.
Upvotes: 1
Views: 116
Reputation: 12103
You could define a smart constructor for Here
which does not have any constraint on the shape of the t
value it is applied to:
Definition Here' (v : t) : path v := match v return path v with
| Node c vs => Here c vs
end.
You can then write:
let here : path (Vector.nth children fin_n) := Here' _ in
Upvotes: 2