Reputation: 306
I have come across the concept called destructuring declarations - when you can return multiple values from a function at once. It seems very convenient, but at the same time it looks like a tricky workaround. Each time when I think about that feature in Java, I understand that it's a hole in my architecture - there should probably be a class then, not just a couple of variables.
What do you think?
Upvotes: 5
Views: 1554
Reputation: 5421
Destructuring is the most useful when dealing with built-in data structures. Their fields have names making sense in the context of a data structure (handy when you're writing your own hashmap), but completely cryptic when you're dealing with the data contained there (which is 100% of the time, nobody writes their own hashmaps). Eg. Pair
with it's first
and second
or Map.Entry
with key
and value
.
Consider transforming Map
values:
val myMap = mapOf("apples" to 0, "oranges" to 1, "bananas" to 2)
myMap
.asIterable()
.filter { it.value > 0 }
.sortedBy { it.key.length }
.joinToString(prefix = "We have ", postfix = " in the warehouse") {
"{$it.value} of ${it.key}"
}
To make it readable, you'd have to define intermediate variables:
myMap
.asIterable()
.filter {
val count = it.value
count > 0
}
.sortedBy {
val fruit = it.key
fruit.length
}
.joinToString(prefix = "We have ", postfix = " in the warehouse") {
val count = it.value
val fruit = it.key
"$count of $fruit"
}
Now it's readable, but at what cost?!?
Destructuring makes this cost more beareable:
myMap
.asIterable()
.filter { (fruit, count) -> count > 0 }
.sortedBy { (fruit, count) -> fruit.length }
.joinToString(prefix = "We have ", postfix = " in the warehouse") { (fruit, count) ->
"$count of $fruit"
}
That's the point.
Upvotes: 0
Reputation: 69883
What's the point of destructuring declarations in Kotlin?
Structuring, or construction, is creating an object from values in different variables. Destructuring is the opposite, to extract values into variables from within an existing object.
Part of the Kotlin philosophy is to be concise since the simpler and more concise the code is, the faster you’ll understand what’s going on. Destructuring improves readability which is part of being concise. Compare the following two snippets (let's consider the class Triple
)
Without using destructuring
fun getFullName() = Triple("Thomas", "Alva", "Edison")
val result = getFullName()
val first = result.first
val middle = result.second
val last = result.third
Using destructuring
fun getFullName() = Triple("Thomas", "Alva", "Edison")
val (first, middle, last) = getFullName()
It is also possible to take advantage of destructuring to extract key
and value
from Map
's entries.
for ((key, value) in aMap) {
/* ... */
}
Upvotes: 0
Reputation: 250
You can also define componentN function as extension for non data classes like this:
operator fun Location.component1() = latitude
operator fun Location.component2() = longitude
and when you want to process on list of locations, you can write this:
for ((lat, lon) in locations) {
......
}
Upvotes: 0
Reputation: 148089
The concept allows having classes that clearly identify a few of their primary properties, the components.
Then you can access these components by using a destructuring declaration, without syntactic noise of accessing the properties.
Compare:
val point = clickEvent.getPointOnScreen()
val x = point.xCoordinate
val y = point.yCoordinate
// Use `x` and `y` in some calculations
and, assuming that the type has component1
and component2
, just:
val (x, y) = clickEvent.getPointOnScreen()
Basically, it is not necessary to use this sort of syntactic sugar, and the concept itself does not harm any of the abstractions, it only provides a convenient way to access properties of a class instance in some cases when you don't need the instance itself.
Another example is working with map entries, e.g:
for ((key, value) in myMap) { /* ... */ }
There's still a Map.Entry<K, V>
behind the (key, value)
destructuring, and you can replace it by for (entry in myMap) ...
, but usually it's the two properties that you need. This is where destructuring saves you from a little syntactic noise.
Upvotes: 7