norbjd
norbjd

Reputation: 11237

How to use Spark Streaming with Kafka with Kerberos?

I have met some issues while trying to consume messages from Kafka with a Spark Streaming application in a Kerberized Hadoop cluster. I tried both of the two approaches listed here :

The receiver-based approach (KafkaUtils.createStream) throws 2 types of exceptions (different exceptions whether I am in local mode (--master local[*]) or in YARN mode (--master yarn --deploy-mode client) :

In both modes (local or YARN), the direct approach (KafkaUtils.createDirectStream) returns an unexplained EOFException (see details below).

My final goal is to launch a Spark Streaming job on YARN, so I will leave the Spark local job aside.

Here is my test environment :

I'm working on a single-node cluster (hostname = quickstart.cloudera) for testing purposes. For those interested to reproduce the tests, I'm working on a custom Docker container based on cloudera/quickstart (Git repo).

Below is my sample code I used in a spark-shell. Of course this code works when Kerberos is not enabled : messages produced by kafka-console-producer are received by the Spark application.

import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.storage.StorageLevel
import kafka.serializer.StringDecoder

val ssc = new StreamingContext(sc, Seconds(5))

val topics = Map("test-kafka" -> 1)

def readFromKafkaReceiver(): Unit = {
    val kafkaParams = Map(
        "zookeeper.connect" -> "quickstart.cloudera:2181",
        "group.id" -> "gid1",
        "client.id" -> "cid1",
        "zookeeper.session.timeout.ms" -> "5000",
        "zookeeper.connection.timeout.ms" -> "5000"
    )

    val stream = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics, StorageLevel.MEMORY_ONLY_2)
    stream.print
}

def readFromKafkaDirectStream(): Unit = {
    val kafkaDirectParams = Map(
        "bootstrap.servers" -> "quickstart.cloudera:9092",
        "group.id" -> "gid1",
        "client.id" -> "cid1"
    )

    val directStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaDirectParams, topics.map(_._1).toSet)
    directStream.print
}

readFromKafkaReceiver() // or readFromKafkaDirectStream()

ssc.start

Thread.sleep(20000)

ssc.stop(stopSparkContext = false, stopGracefully = true)

With Kerberos enabled, this code does not work. I followed this guide : Configuring Kafka Security, and created two configuration files :

jaas.conf :

KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
keyTab="/home/simpleuser/simpleuser.keytab"
principal="simpleuser@CLOUDERA";
};

client.properties :

security.protocol=SASL_PLAINTEXT
sasl.kerberos.service.name=kafka

I can produce messages with :

export KAFKA_OPTS="-Djava.security.auth.login.config=/home/simpleuser/jaas.conf"
kafka-console-producer \
    --broker-list quickstart.cloudera:9092 \
    --topic test-kafka \
    --producer.config client.properties

But I can't consume those messages from a Spark Streaming application. To launch spark-shell in yarn-client mode, I just created a new JAAS configuration (jaas_with_zk_yarn.conf), with a Zookeeper section (Client), and with the reference to the keytab being only the name of the file (the keytab is then passed through --keytab option) :

KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
keyTab="simpleuser.keytab"
principal="simpleuser@CLOUDERA";
};

Client {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
keyTab="simpleuser.keytab"
principal="simpleuser@CLOUDERA";
};

This new file is passed in --files option :

spark-shell --master yarn --deploy-mode client \
    --num-executors 2 \
    --files /home/simpleuser/jaas_with_zk_yarn.conf \
    --conf "spark.executor.extraJavaOptions=-Djava.security.auth.login.config=jaas_with_zk_yarn.conf" \
    --conf "spark.driver.extraJavaOptions=-Djava.security.auth.login.config=jaas_with_zk_yarn.conf" \
    --keytab /home/simpleuser/simpleuser.keytab \
    --principal simpleuser

I used the same code as previously, except that I added two other Kafka parameters, corresponding to the contents of consumer.properties file :

"security.protocol" -> "SASL_PLAINTEXT",
"sasl.kerberos.service.name" -> "kafka"

readFromKafkaReceiver() throws the following error once Spark Streaming Context is started (cannot connect to Zookeeper) :

ERROR scheduler.ReceiverTracker: Deregistered receiver for stream 0: Error starting receiver 0 - org.I0Itec.zkclient.exception.ZkTimeoutException: Unable to connect to zookeeper server within timeout: 5000
        at org.I0Itec.zkclient.ZkClient.connect(ZkClient.java:1223)
        at org.I0Itec.zkclient.ZkClient.<init>(ZkClient.java:155)
        at org.I0Itec.zkclient.ZkClient.<init>(ZkClient.java:129)
        at kafka.utils.ZkUtils$.createZkClientAndConnection(ZkUtils.scala:89)
        at kafka.utils.ZkUtils$.apply(ZkUtils.scala:71)
        at kafka.consumer.ZookeeperConsumerConnector.connectZk(ZookeeperConsumerConnector.scala:191)
        at kafka.consumer.ZookeeperConsumerConnector.<init>(ZookeeperConsumerConnector.scala:139)
        at kafka.consumer.ZookeeperConsumerConnector.<init>(ZookeeperConsumerConnector.scala:156)
        at kafka.consumer.Consumer$.create(ConsumerConnector.scala:109)
        at org.apache.spark.streaming.kafka.KafkaReceiver.onStart(KafkaInputDStream.scala:100)
        at org.apache.spark.streaming.receiver.ReceiverSupervisor.startReceiver(ReceiverSupervisor.scala:148)
        at org.apache.spark.streaming.receiver.ReceiverSupervisor.start(ReceiverSupervisor.scala:130)
        at org.apache.spark.streaming.scheduler.ReceiverTracker$ReceiverTrackerEndpoint$$anonfun$9.apply(ReceiverTracker.scala:575)
        at org.apache.spark.streaming.scheduler.ReceiverTracker$ReceiverTrackerEndpoint$$anonfun$9.apply(ReceiverTracker.scala:565)
        at org.apache.spark.SparkContext$$anonfun$38.apply(SparkContext.scala:2003)
        at org.apache.spark.SparkContext$$anonfun$38.apply(SparkContext.scala:2003)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
        at org.apache.spark.scheduler.Task.run(Task.scala:89)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)

Sometimes the connection to ZK is established (no timeout reached), but then no messages are received.

readFromKafkaDirectStream() throws the following error as soon as this method is called :

org.apache.spark.SparkException: java.io.EOFException
        at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$checkErrors$1.apply(KafkaCluster.scala:366)
        at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$checkErrors$1.apply(KafkaCluster.scala:366)
        at scala.util.Either.fold(Either.scala:97)
        at org.apache.spark.streaming.kafka.KafkaCluster$.checkErrors(KafkaCluster.scala:365)
        at org.apache.spark.streaming.kafka.KafkaUtils$.getFromOffsets(KafkaUtils.scala:222)
        at org.apache.spark.streaming.kafka.KafkaUtils$.createDirectStream(KafkaUtils.scala:484)
        at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.readFromKafkaDirectStream(<console>:47)

There is no more explanation, just an EOFException. I presume there are communication problems between Spark and Kafka broker, but no more explanations. I also tried metadata.broker.list instead of bootstrap.servers, but without success.

Maybe I'm missing something in the JAAS config files, or in Kafka parameters ? Maybe the Spark options (extraJavaOptions) are invalid ? I tried so much possibilities I'm a little bit lost.

I'll be glad if someone could help me to fix at least one of these problems (direct approach or receiver-based). Thanks :)

Upvotes: 4

Views: 8638

Answers (1)

planky
planky

Reputation: 440

It is not supported with Spark 1.6, as stated in Cloudera docs:

Spark Streaming cannot consume from secure Kafka till it starts using Kafka 0.9 Consumer API

https://www.cloudera.com/documentation/enterprise/release-notes/topics/cdh_rn_spark_ki.html#ki_spark_streaming_consumer_api

Spark-streaming in 1.6 uses old consumer API, where secure consuming is not supported.

You can use Spark 2.1, which supports secure Kafka: https://blog.cloudera.com/blog/2017/05/reading-data-securely-from-apache-kafka-to-apache-spark/

Upvotes: 3

Related Questions