Reputation: 5001
I'm looking for a simple way of parsing complex text files into a pandas DataFrame. Below is a sample file, what I want the result to look like after parsing, and my current method.
Is there any way to make it more concise/faster/more pythonic/more readable?
I've also put this question on Code Review.
I eventually wrote a blog article to explain this to beginners.
Here is a sample file:
Sample text
A selection of students from Riverdale High and Hogwarts took part in a quiz. This is a record of their scores.
School = Riverdale High
Grade = 1
Student number, Name
0, Phoebe
1, Rachel
Student number, Score
0, 3
1, 7
Grade = 2
Student number, Name
0, Angela
1, Tristan
2, Aurora
Student number, Score
0, 6
1, 3
2, 9
School = Hogwarts
Grade = 1
Student number, Name
0, Ginny
1, Luna
Student number, Score
0, 8
1, 7
Grade = 2
Student number, Name
0, Harry
1, Hermione
Student number, Score
0, 5
1, 10
Grade = 3
Student number, Name
0, Fred
1, George
Student number, Score
0, 0
1, 0
Here is what I want the result to look like after parsing:
Name Score
School Grade Student number
Hogwarts 1 0 Ginny 8
1 Luna 7
2 0 Harry 5
1 Hermione 10
3 0 Fred 0
1 George 0
Riverdale High 1 0 Phoebe 3
1 Rachel 7
2 0 Angela 6
1 Tristan 3
2 Aurora 9
Here is how I currently parse it:
import re
import pandas as pd
def parse(filepath):
"""
Parse text at given filepath
Parameters
----------
filepath : str
Filepath for file to be parsed
Returns
-------
data : pd.DataFrame
Parsed data
"""
data = []
with open(filepath, 'r') as file:
line = file.readline()
while line:
reg_match = _RegExLib(line)
if reg_match.school:
school = reg_match.school.group(1)
if reg_match.grade:
grade = reg_match.grade.group(1)
grade = int(grade)
if reg_match.name_score:
value_type = reg_match.name_score.group(1)
line = file.readline()
while line.strip():
number, value = line.strip().split(',')
value = value.strip()
dict_of_data = {
'School': school,
'Grade': grade,
'Student number': number,
value_type: value
}
data.append(dict_of_data)
line = file.readline()
line = file.readline()
data = pd.DataFrame(data)
data.set_index(['School', 'Grade', 'Student number'], inplace=True)
# consolidate df to remove nans
data = data.groupby(level=data.index.names).first()
# upgrade Score from float to integer
data = data.apply(pd.to_numeric, errors='ignore')
return data
class _RegExLib:
"""Set up regular expressions"""
# use https://regexper.com to visualise these if required
_reg_school = re.compile('School = (.*)\n')
_reg_grade = re.compile('Grade = (.*)\n')
_reg_name_score = re.compile('(Name|Score)')
def __init__(self, line):
# check whether line has a positive match with all of the regular expressions
self.school = self._reg_school.match(line)
self.grade = self._reg_grade.match(line)
self.name_score = self._reg_name_score.search(line)
if __name__ == '__main__':
filepath = 'sample.txt'
data = parse(filepath)
print(data)
Upvotes: 32
Views: 43516
Reputation: 21
This is exactly the type of problem that Pawpaw was designed for.
Pawpaw is a high performance parsing & text segmentation framework that allows you to quickly and easily build complex, pipelined parsers. Segments are automatically organized into tree graphs that can be serialized, traversed, and searched using a powerful structured query language
Here two different Pawpaw-based approaches that solve this problem. I've copied the most compact version below, along with some added tree visualization thrown in:
Code
import sys
import os.path
import regex
from pawpaw import arborform, Ito, visualization
import pandas as pd
def get_parser() -> arborform.Itorator:
return arborform.Extract(
regex.compile(
r'(?<school>School = (?<name>.+?)\n'
r'(?<grade>Grade = (?<key>\d+)\n'
r'Student number, Name\n(?P<stu_num_names>(?:(?P<stu_num>\d+), (?P<name>.+?)\n)+)\n'
r'Student number, Score\n(?P<stu_num_scores>(?:(?P<stu_num>\d+), (?P<score>\d+)(?:$|\n))+)(?:$|\n)'
r')+)+',
regex.DOTALL
)
)
# read file
with open(os.path.join(sys.path[0], 'input.txt')) as f:
ito = Ito(f.read(), desc='all')
# parse
parser = get_parser()
ito.children.add(*parser(ito))
# display Pawpaw tree
tree_vis = visualization.pepo.Tree()
print(tree_vis.dumps(ito))
# build pandas DataFrame
d = []
for school in ito.find_all('*[d:school]'):
school_name = str(school.find('*[d:name]'))
for grade in school.find_all('**[d:grade]'):
grade_key = int(str(grade.find('*[d:key]')))
for stu_num in grade.find_all('*[d:stu_num_names]/*[d:stu_num]'):
stu_name = str(stu_num.find('>[d:name]'))
stu_num = str(stu_num)
stu_score = int(str(grade.find('*[d:stu_num_scores]/*[d:stu_num]&[s:' + stu_num + ']/>[d:score]')))
d.append({'School': school_name, 'Grade': grade_key, 'Student number': stu_num, 'Name': stu_name, 'Score': stu_score})
data = pd.DataFrame(d)
data.set_index(['School', 'Grade', 'Student number'], inplace=True)
data = data.groupby(level=data.index.names).first()
# display pandas DataFrame
print(data)
Output
(0, 478) 'all' : 'School = Riverdale H…, Score\n0, 0\n1, 0'
├──(0, 210) 'school' : 'School = Riverdale H…, 6\n1, 3\n2, 9\n\n'
│ ├──(9, 23) 'name' : 'Riverdale High'
│ ├──(24, 109) 'grade' : 'Grade = 1\nStudent n…ore\n0, 3\n1, 7\n\n'
│ │ ├──(32, 33) 'key' : '1'
│ │ ├──(55, 75) 'stu_num_names' : '0, Phoebe\n1, Rachel\n'
│ │ │ ├──(55, 56) 'stu_num' : '0'
│ │ │ ├──(58, 64) 'name' : 'Phoebe'
│ │ │ ├──(65, 66) 'stu_num' : '1'
│ │ │ └──(68, 74) 'name' : 'Rachel'
│ │ └──(98, 108) 'stu_num_scores' : '0, 3\n1, 7\n'
│ │ ├──(98, 99) 'stu_num' : '0'
│ │ ├──(101, 102) 'score' : '3'
│ │ ├──(103, 104) 'stu_num' : '1'
│ │ └──(106, 107) 'score' : '7'
│ └──(109, 210) 'grade' : 'Grade = 2\nStudent n…, 6\n1, 3\n2, 9\n\n'
│ ├──(117, 118) 'key' : '2'
│ ├──(140, 171) 'stu_num_names' : '0, Angela\n1, Tristan\n2, Aurora\n'
│ │ ├──(140, 141) 'stu_num' : '0'
│ │ ├──(143, 149) 'name' : 'Angela'
│ │ ├──(150, 151) 'stu_num' : '1'
│ │ ├──(153, 160) 'name' : 'Tristan'
│ │ ├──(161, 162) 'stu_num' : '2'
│ │ └──(164, 170) 'name' : 'Aurora'
│ └──(194, 209) 'stu_num_scores' : '0, 6\n1, 3\n2, 9\n'
│ ├──(194, 195) 'stu_num' : '0'
│ ├──(197, 198) 'score' : '6'
│ ├──(199, 200) 'stu_num' : '1'
│ ├──(202, 203) 'score' : '3'
│ ├──(204, 205) 'stu_num' : '2'
│ └──(207, 208) 'score' : '9'
└──(210, 478) 'school' : 'School = Hogwarts\nG…, Score\n0, 0\n1, 0'
├──(219, 227) 'name' : 'Hogwarts'
├──(228, 310) 'grade' : 'Grade = 1\nStudent n…ore\n0, 8\n1, 7\n\n'
│ ├──(236, 237) 'key' : '1'
│ ├──(259, 276) 'stu_num_names' : '0, Ginny\n1, Luna\n'
│ │ ├──(259, 260) 'stu_num' : '0'
│ │ ├──(262, 267) 'name' : 'Ginny'
│ │ ├──(268, 269) 'stu_num' : '1'
│ │ └──(271, 275) 'name' : 'Luna'
│ └──(299, 309) 'stu_num_scores' : '0, 8\n1, 7\n'
│ ├──(299, 300) 'stu_num' : '0'
│ ├──(302, 303) 'score' : '8'
│ ├──(304, 305) 'stu_num' : '1'
│ └──(307, 308) 'score' : '7'
├──(310, 397) 'grade' : 'Grade = 2\nStudent n…re\n0, 5\n1, 10\n\n'
│ ├──(318, 319) 'key' : '2'
│ ├──(341, 362) 'stu_num_names' : '0, Harry\n1, Hermione\n'
│ │ ├──(341, 342) 'stu_num' : '0'
│ │ ├──(344, 349) 'name' : 'Harry'
│ │ ├──(350, 351) 'stu_num' : '1'
│ │ └──(353, 361) 'name' : 'Hermione'
│ └──(385, 396) 'stu_num_scores' : '0, 5\n1, 10\n'
│ ├──(385, 386) 'stu_num' : '0'
│ ├──(388, 389) 'score' : '5'
│ ├──(390, 391) 'stu_num' : '1'
│ └──(393, 395) 'score' : '10'
└──(397, 478) 'grade' : 'Grade = 3\nStudent n…, Score\n0, 0\n1, 0'
├──(405, 406) 'key' : '3'
├──(428, 446) 'stu_num_names' : '0, Fred\n1, George\n'
│ ├──(428, 429) 'stu_num' : '0'
│ ├──(431, 435) 'name' : 'Fred'
│ ├──(436, 437) 'stu_num' : '1'
│ └──(439, 445) 'name' : 'George'
└──(469, 478) 'stu_num_scores' : '0, 0\n1, 0'
├──(469, 470) 'stu_num' : '0'
├──(472, 473) 'score' : '0'
├──(474, 475) 'stu_num' : '1'
└──(477, 478) 'score' : '0'
Name Score
School Grade Student number
Hogwarts 1 0 Ginny 8
1 Luna 7
2 0 Harry 5
1 Hermione 10
3 0 Fred 0
1 George 0
Riverdale High 1 0 Phoebe 3
1 Rachel 7
2 0 Angela 6
1 Tristan 3
2 Aurora 9
Upvotes: 0
Reputation: 6576
I would suggest using a parser combinator library like parsy. Compared to using regexes, the result will not be as concise, but it will be much more readable and robust, while still being relatively light-weight.
Parsing is in general quite a hard task, and an approach that is good for people at beginner level for general programming might be hard to find.
EDIT 2022: Full example code, using modern Parsy, that parses your supplied example and produces the same output.
It separates into 3 phases:
This separation means fewer hacks at the DataFrame level are needed.
import pandas as pd
from parsy import string, regex, seq
from dataclasses import dataclass
@dataclass
class Student:
name: str
number: int
@dataclass
class Score:
score: int
number: int
@dataclass
class StudentWithScore:
name: str
number: int
score: int
@dataclass
class Grade:
grade: int
students: list[Student]
scores: list[Score]
@property
def students_with_scores(self) -> list[StudentWithScore]:
names = {st.number: st.name for st in self.students}
return [StudentWithScore(names[score.number], score.number, score.score) for score in self.scores]
@dataclass
class School:
name: str
grades: list[Grade]
integer = regex(r"\d+").map(int)
student_number = integer
score = integer
student_name = regex(r"[^\n]+")
student_def = seq(
number=student_number << string(", "),
name=student_name << string("\n"),
).combine_dict(Student)
student_def_list = string("Student number, Name\n") >> student_def.many()
score_def = seq(
number=student_number << string(", "),
score=score << string("\n"),
).combine_dict(Score)
score_def_list = string("Student number, Score\n") >> score_def.many()
grade_value = integer
grade_def = string("Grade = ") >> grade_value << string("\n")
school_grade = seq(
grade=grade_def,
students=student_def_list << regex(r"\n*"),
scores=score_def_list << regex(r"\n*"),
).combine_dict(Grade)
school_name = regex(r"[^\n]+")
school_def = string("School = ") >> school_name << string("\n")
school = seq(
name=school_def,
grades=school_grade.many(),
).combine_dict(School)
def parse(text: str) -> list[School]:
return school.many().parse(text)
def schools_to_dataframe(schools: list[School]) -> pd.DataFrame:
data_dicts = [
{"School": school.name, "Grade": g.grade, "Student number": s.number, "Name": s.name, "Score": s.score}
for school in schools
for g in school.grades
for s in g.students_with_scores
]
data = pd.DataFrame(data_dicts)
data.set_index(["School", "Grade", "Student number"], inplace=True)
return data
if __name__ == "__main__":
filepath = "sample.txt"
text = open(filepath).read()
start = text.index("School =")
schools = parse(text[start:])
data = schools_to_dataframe(schools)
print(data)
Upvotes: 7
Reputation: 43169
This answer has received quite some attention so I felt to add another possibility, namely a parsing option. Here we could use a PEG
parser instead (e.g. parsimonious
) in combination with a NodeVisitor
class:
from parsimonious.grammar import Grammar
from parsimonious.nodes import NodeVisitor
import pandas as pd
grammar = Grammar(
r"""
schools = (school_block / ws)+
school_block = school_header ws grade_block+
grade_block = grade_header ws name_header ws (number_name)+ ws score_header ws (number_score)+ ws?
school_header = ~"^School = (.*)"m
grade_header = ~"^Grade = (\d+)"m
name_header = "Student number, Name"
score_header = "Student number, Score"
number_name = index comma name ws
number_score = index comma score ws
comma = ws? "," ws?
index = number+
score = number+
number = ~"\d+"
name = ~"[A-Z]\w+"
ws = ~"\s*"
"""
)
tree = grammar.parse(data)
class SchoolVisitor(NodeVisitor):
output, names = ([], [])
current_school, current_grade = None, None
def _getName(self, idx):
for index, name in self.names:
if index == idx:
return name
def generic_visit(self, node, visited_children):
return node.text or visited_children
def visit_school_header(self, node, children):
self.current_school = node.match.group(1)
def visit_grade_header(self, node, children):
self.current_grade = node.match.group(1)
self.names = []
def visit_number_name(self, node, children):
index, name = None, None
for child in node.children:
if child.expr.name == 'name':
name = child.text
elif child.expr.name == 'index':
index = child.text
self.names.append((index, name))
def visit_number_score(self, node, children):
index, score = None, None
for child in node.children:
if child.expr.name == 'index':
index = child.text
elif child.expr.name == 'score':
score = child.text
name = self._getName(index)
# build the entire entry
entry = (self.current_school, self.current_grade, index, name, score)
self.output.append(entry)
sv = SchoolVisitor()
sv.visit(tree)
df = pd.DataFrame.from_records(sv.output, columns = ['School', 'Grade', 'Student number', 'Name', 'Score'])
print(df)
Well then, watching Lord of the Rings the xth time, I had to bridge some time to the very finale:
^
School\s*=\s*(?P<school_name>.+)
(?P<school_content>[\s\S]+?)
(?=^School|\Z)
^
Grade\s*=\s*(?P<grade>.+)
(?P<students>[\s\S]+?)
(?=^Grade|\Z)
^
Student\ number,\ Name[\n\r]
(?P<student_names>(?:^\d+.+[\n\r])+)
\s*
^
Student\ number,\ Score[\n\r]
(?P<student_scores>(?:^\d+.+[\n\r])+)
The rest is a generator expression which is then fed into the DataFrame
constructor (along with the column names).
import pandas as pd, re
rx_school = re.compile(r'''
^
School\s*=\s*(?P<school_name>.+)
(?P<school_content>[\s\S]+?)
(?=^School|\Z)
''', re.MULTILINE | re.VERBOSE)
rx_grade = re.compile(r'''
^
Grade\s*=\s*(?P<grade>.+)
(?P<students>[\s\S]+?)
(?=^Grade|\Z)
''', re.MULTILINE | re.VERBOSE)
rx_student_score = re.compile(r'''
^
Student\ number,\ Name[\n\r]
(?P<student_names>(?:^\d+.+[\n\r])+)
\s*
^
Student\ number,\ Score[\n\r]
(?P<student_scores>(?:^\d+.+[\n\r])+)
''', re.MULTILINE | re.VERBOSE)
result = ((school.group('school_name'), grade.group('grade'), student_number, name, score)
for school in rx_school.finditer(string)
for grade in rx_grade.finditer(school.group('school_content'))
for student_score in rx_student_score.finditer(grade.group('students'))
for student in zip(student_score.group('student_names')[:-1].split("\n"), student_score.group('student_scores')[:-1].split("\n"))
for student_number in [student[0].split(", ")[0]]
for name in [student[0].split(", ")[1]]
for score in [student[1].split(", ")[1]]
)
df = pd.DataFrame(result, columns = ['School', 'Grade', 'Student number', 'Name', 'Score'])
print(df)
rx_school = re.compile(r'^School\s*=\s*(?P<school_name>.+)(?P<school_content>[\s\S]+?)(?=^School|\Z)', re.MULTILINE)
rx_grade = re.compile(r'^Grade\s*=\s*(?P<grade>.+)(?P<students>[\s\S]+?)(?=^Grade|\Z)', re.MULTILINE)
rx_student_score = re.compile(r'^Student number, Name[\n\r](?P<student_names>(?:^\d+.+[\n\r])+)\s*^Student number, Score[\n\r](?P<student_scores>(?:^\d+.+[\n\r])+)', re.MULTILINE)
School Grade Student number Name Score
0 Riverdale High 1 0 Phoebe 3
1 Riverdale High 1 1 Rachel 7
2 Riverdale High 2 0 Angela 6
3 Riverdale High 2 1 Tristan 3
4 Riverdale High 2 2 Aurora 9
5 Hogwarts 1 0 Ginny 8
6 Hogwarts 1 1 Luna 7
7 Hogwarts 2 0 Harry 5
8 Hogwarts 2 1 Hermione 10
9 Hogwarts 3 0 Fred 0
10 Hogwarts 3 1 George 0
import timeit
print(timeit.timeit(makedf, number=10**4))
# 11.918397722000009 s
Upvotes: 39
Reputation: 1773
In a similar manner to your original code I define the parsing regex's
import re
import pandas as pd
parse_re = {
'school': re.compile(r'School = (?P<school>.*)$'),
'grade': re.compile(r'Grade = (?P<grade>\d+)'),
'student': re.compile(r'Student number, (?P<info>\w+)'),
'data': re.compile(r'(?P<number>\d+), (?P<value>.*)$'),
}
def parse(line):
'''parse the line by regex search against possible line formats
returning the id and match result of first matching regex,
or None if no match is found'''
return reduce(lambda (i,m),(id,rx): (i,m) if m else (id, rx.search(line)),
parse_re.items(), (None,None))
then loop through the lines gathering the information about each student. Once the record is complete (when we have Score
the record is complete) we append the record to a list.
A small state machine that is driven by the line by line regex matches collates each record. In particular we have to save the students in a grade by number as their Score and Name are provided separately in the input file.
results = []
with open('sample.txt') as f:
record = {}
for line in f:
id, match = parse(line)
if match is None:
continue
if id == 'school':
record['School'] = match.group('school')
elif id == 'grade':
record['Grade'] = int(match.group('grade'))
names = {} # names is a number indexed dictionary of student names
elif id == 'student':
info = match.group('info')
elif id == 'data':
number = int(match.group('number'))
value = match.group('value')
if info == 'Name':
names[number] = value
elif info == 'Score':
record['Student number'] = number
record['Name'] = names[number]
record['Score'] = int(value)
results.append(record.copy())
Finally the list of records is converted to a DataFrame
.
df = pd.DataFrame(results, columns=['School', 'Grade', 'Student number', 'Name', 'Score'])
print df
Outputs:
School Grade Student number Name Score
0 Riverdale High 1 0 Phoebe 3
1 Riverdale High 1 1 Rachel 7
2 Riverdale High 2 0 Angela 6
3 Riverdale High 2 1 Tristan 3
4 Riverdale High 2 2 Aurora 9
5 Hogwarts 1 0 Ginny 8
6 Hogwarts 1 1 Luna 7
7 Hogwarts 2 0 Harry 5
8 Hogwarts 2 1 Hermione 10
9 Hogwarts 3 0 Fred 0
10 Hogwarts 3 1 George 0
Some optimizations would be to compare the most common regex's first and to explicitly skip blank lines. Building the dataframe as we go would avoid extra copies of the data but I gather that appending to a dataframe is an expensive operation.
Upvotes: 3
Reputation: 3739
here is my suggestion using split and pd.concat ("txt" stands for a copy of the original text in the question), basicly the idea is to split by the group words and then concat into data frames, the most inner parsing takes advantage of the fact that the names and grades are in a csv like format. here goes:
import pandas as pd
from io import StringIO
schools = txt.lower().split('school = ')
schools_dfs = []
for school in schools[1:]:
grades = school.split('grade = ')
grades_dfs = []
for grade in grades[1:]:
features = grade.split('student number,')
feature_dfs = []
for feature in features[1:]:
feature_dfs.append(pd.read_csv(StringIO(feature)))
feature_df = pd.concat(feature_dfs, axis=1)
feature_df['grade'] = features[0].replace('\n','')
grades_dfs.append(feature_df)
grades_df = pd.concat(grades_dfs)
grades_df['school'] = grades[0].replace('\n','')
schools_dfs.append(grades_df)
schools_df = pd.concat(schools_dfs)
schools_df.set_index(['school', 'grade'])
Upvotes: 8