Reputation: 1998
I'm predicting image classes using Keras. It works in Google Cloud ML (GCML), but for efficiency need change it to pass base64 strings instead of json array. Related Documentation
I can easily run python code to decode a base64 string into json array, but when using GCML I don't have the opportunity to run a preprocessing step (unless maybe use a Lambda layer in Keras, but I don't think that is the correct approach).
Another answer suggested adding tf.placeholder
with type of tf.string
, which makes sense, but how to incorporate that into the Keras model?
Here is complete code for training the model and saving the exported model for GCML...
import os
import numpy as np
import tensorflow as tf
import keras
from keras import backend as K
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.preprocessing import image
from tensorflow.python.platform import gfile
IMAGE_HEIGHT = 138
IMAGE_WIDTH = 106
NUM_CLASSES = 329
def preprocess(filename):
# decode the image file starting from the filename
# end up with pixel values that are in the -1, 1 range
image_contents = tf.read_file(filename)
image = tf.image.decode_png(image_contents, channels=1)
image = tf.image.convert_image_dtype(image, dtype=tf.float32) # 0-1
image = tf.expand_dims(image, 0) # resize_bilinear needs batches
image = tf.image.resize_bilinear(image, [IMAGE_HEIGHT, IMAGE_WIDTH], align_corners=False)
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0) # -1 to 1
image = tf.squeeze(image,[0])
return image
filelist = gfile.ListDirectory("images")
sess = tf.Session()
with sess.as_default():
x = np.array([np.array( preprocess(os.path.join("images", filename)).eval() ) for filename in filelist])
input_shape = (IMAGE_HEIGHT, IMAGE_WIDTH, 1) # 1, because preprocessing made grayscale
# in our case the labels come from part of the filename
y = np.array([int(filename[filename.index('_')+1:-4]) for filename in filelist])
# convert class labels to numbers
y = keras.utils.to_categorical(y, NUM_CLASSES)
########## TODO: something here? ##########
image = K.placeholder(shape=(), dtype=tf.string)
decoded = tf.image.decode_jpeg(image, channels=3)
# scores = build_model(decoded)
model = Sequential()
# model.add(decoded)
model.add(Conv2D(32, kernel_size=(2, 2), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(
x,
y,
batch_size=64,
epochs=20,
verbose=1,
validation_split=0.2,
shuffle=False
)
predict_signature = tf.saved_model.signature_def_utils.build_signature_def(
inputs={'input_bytes':tf.saved_model.utils.build_tensor_info(model.input)},
########## TODO: something here? ##########
# inputs={'input': image }, # input name must have "_bytes" suffix to use base64.
outputs={'formId': tf.saved_model.utils.build_tensor_info(model.output)},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
)
builder = tf.saved_model.builder.SavedModelBuilder("exported_model")
builder.add_meta_graph_and_variables(
sess=K.get_session(),
tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: predict_signature
},
legacy_init_op=tf.group(tf.tables_initializer(), name='legacy_init_op')
)
builder.save()
This is related to my previous question.
Update:
The heart of the question is how to incorporate the placeholder that calls decode into the Keras model. In other words, after creating the placeholder that decodes the base64 string to a tensor, how to incorporate that into what Keras runs? I assume it needs to be a layer.
image = K.placeholder(shape=(), dtype=tf.string)
decoded = tf.image.decode_jpeg(image, channels=3)
model = Sequential()
# Something like this, but this fails because it is a tensor, not a Keras layer. Possibly this is where a Lambda layer comes in?
model.add(decoded)
model.add(Conv2D(32, kernel_size=(2, 2), activation='relu', input_shape=input_shape))
...
Update 2:
Trying to use a lambda layer to accomplish this...
import keras
from keras.models import Sequential
from keras.layers import Lambda
from keras import backend as K
import tensorflow as tf
image = K.placeholder(shape=(), dtype=tf.string)
model = Sequential()
model.add(Lambda(lambda image: tf.image.decode_jpeg(image, channels=3), input_shape=() ))
Gives the error: TypeError: Input 'contents' of 'DecodeJpeg' Op has type float32 that does not match expected type of string.
Upvotes: 6
Views: 2989
Reputation: 1050
first of all I use tf.keras but this should not be a big problem. So here is an example of how you can read a base64 decoded jpeg:
def preprocess_and_decode(img_str, new_shape=[299,299]):
img = tf.io.decode_base64(img_str)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.resize_images(img, new_shape, method=tf.image.ResizeMethod.BILINEAR, align_corners=False)
# if you need to squeeze your input range to [0,1] or [-1,1] do it here
return img
InputLayer = Input(shape = (1,),dtype="string")
OutputLayer = Lambda(lambda img : tf.map_fn(lambda im : preprocess_and_decode(im[0]), img, dtype="float32"))(InputLayer)
base64_model = tf.keras.Model(InputLayer,OutputLayer)
The code above creates a model that takes a jpeg of any size, resizes it to 299x299 and returns as 299x299x3 tensor. This model can be exported directly to saved_model and used for Cloud ML Engine serving. It is a little bit stupid, since the only thing it does is the convertion of base64 to tensor.
If you need to redirect the output of this model to the input of an existing trained and compiled model (e.g inception_v3) you have to do the following:
base64_input = base64_model.input
final_output = inception_v3(base64_model.output)
new_model = tf.keras.Model(base64_input,final_output)
This new_model can be saved. It takes base64 jpeg and returns classes identified by the inception_v3 part.
Upvotes: 9
Reputation: 7838
Another answer suggested adding
tf.placeholder
with type oftf.string
, which makes sense, but how to incorporate that into the Keras model?
In Keras you can access your selected Backend (in this case Tensorflow) by doing:
from keras import backend as K
This you already seem to import on your code. That will enable you to access some native methods and resources available on the backend of your choice. It is the case that Keras backend includes a method for creating placeholders, among other utilities. Regarding placeholders, we can see what the Keras docs indicates about them:
placeholder
keras.backend.placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None)
Instantiates a placeholder tensor and returns it.
It also gives some example on its use:
>>> from keras import backend as K
>>> input_ph = K.placeholder(shape=(2, 4, 5))
>>> input_ph._keras_shape
(2, 4, 5)
>>> input_ph
<tf.Tensor 'Placeholder_4:0' shape=(2, 4, 5) dtype=float32>
As you can see, this is returning a Tensorflow tensor, with shape (2,4,5) and of dtype float. If you had another backend while doing the example you would get another tensor object (a Theano one surely). You can therefore use this placeholder()
to adapt the solution you got on your previous question.
In conclusion, you can use your backend imported as K
(or whatever you want) to do calls on the methods and objects available on the backend of your choice, by doing K.foo.bar()
on the desired method. I suggest you give a read to what the Keras Backend to explore more things that can be useful for you on future situations.
Update: As per your edit. Yes, this placeholder should be a layer in your model. Specifically, it should be the Input Layer of your model, as it holds your decoded image (as Keras needs it that way) to classify.
Upvotes: 1