Reputation: 1267
I have the following code snippet (for Hough circle transform):
for r in range(1, 11):
for t in range(0, 360):
trad = np.deg2rad(t)
b = x - r * np.cos(trad)
a = y - r * np.sin(trad)
b = np.floor(b).astype('int')
a = np.floor(a).astype('int')
A[a, b, r-1] += 1
Where A
is a 3D array of shape (height, width, 10)
, and
height
and width
represent the size of a given image.
My goal is to convert the snippet exclusively to numpy code.
My attempt is this:
arr_r = np.arange(1, 11)
arr_t = np.deg2rad(np.arange(0, 360))
arr_cos_t = np.cos(arr_t)
arr_sin_t = np.sin(arr_t)
arr_rcos = arr_r[..., np.newaxis] * arr_cos_t[np.newaxis, ...]
arr_rsin = arr_r[..., np.newaxis] * arr_sin_t[np.newaxis, ...]
arr_a = (y - arr_rsin).flatten().astype('int')
arr_b = (x - arr_rcos).flatten().astype('int')
Where x
and y
are two scalar values.
I am having trouble at converting the increment part: A[a,b,r] += 1
. I thought of this: A[a,b,r]
counts the number of occurrences of the pair (a,b,r)
, so a clue was to use a Cartesian product (but the arrays are too large).
Any tips or tricks I can use?
Thank you very much!
Edit: after filling A
, I need (a,b,r)
as argmax(A)
. The tuple (a,b,r)
identifies a circle and its value in A
represents the confidence value. So I want that tuple with the highest value in A
. This is part of the voting algorithm from Hough circle transform: find circle parameter with unknown radius.
Upvotes: 2
Views: 124
Reputation: 221504
Method #1
Here's one way leveraging broadcasting
to get the counts and update A
(this assumes the a
and b
values computed in the intermediate steps are positive ones) -
d0,d1,d2 = A.shape
arr_r = np.arange(1, 11)
arr_t = np.deg2rad(np.arange(0, 360))
arr_b = np.floor(x - arr_r[:,None] * np.cos(arr_t)).astype('int')
arr_a = np.floor(y - arr_r[:,None] * np.sin(arr_t)).astype('int')
idx = (arr_a*d1*d2) + (arr_b * d2) + (arr_r-1)[:,None]
A.flat[:idx.max()+1] += np.bincount(idx.ravel())
# OR A.flat += np.bincount(idx.ravel(), minlength=A.size)
Method #2
Alternatively, we could avoid bincount
to replace the last step in approach #1
, like so -
idx.ravel().sort()
idx.shape = (-1)
grp_idx = np.flatnonzero(np.concatenate(([True], idx[1:]!=idx[:-1],[True])))
A.flat[idx[grp_idx[:-1]]] += np.diff(grp_idx)
Improvement with numexpr
We could also leverage numexpr
module for faster sine, cosine computations, like so -
import numexpr as ne
arr_r2D = arr_r[:,None]
arr_b = ne.evaluate('floor(x - arr_r2D * cos(arr_t))').astype(int)
arr_a = ne.evaluate('floor(y - arr_r2D * sin(arr_t))').astype(int)
Upvotes: 3