Reputation: 2920
I have pandas dataframe in the following format:
d = {'buyer_code': ['A', 'B', 'C', 'A', 'A', 'B', 'B', 'A', 'C'], 'dollar_amount': ['2240.000', '160.000', '300.000', '10920.000', '10920.000', '235.749', '275.000', '10920.000', '300.000']}
df = pd.DataFrame(data=d)
df
This is how my dataframe looks like:
buyer_code dollar_amount
0 A 2240.000
1 B 160.000
2 C 300.000
3 A 10920.000
4 A 10920.000
5 B 235.749
6 B 275.000
7 A 10920.000
8 C 300.000
I have used groupby to list each buyer and there corresponding dollar amounts.
df.groupby(['buyer_code', 'dollar_amount']).size()
This is the result:
buyer_code dollar_amount
A 10920.000 3
2240.000 1
B 160.000 1
235.749 1
275.000 1
C 300.000 2
dtype: int64
Now I want dollarAmount multiplied by its count and then sum of all the amounts for each buyer.
Lets say for example buyer_code "A" should have (10920.000 * 3) + (2240.000 * 1)
The result should be something like this:
buyer_code dollar_amount
A 35000
B 670.749
C 600.000
How can I get this output?
Upvotes: 2
Views: 969
Reputation: 862641
Use groupby
+ aggregate sum
:
df['dollar_amount'] = df['dollar_amount'].astype(float)
a = df.groupby('buyer_code', as_index=False).sum()
print (a)
buyer_code dollar_amount
0 A 35000.000
1 B 670.749
2 C 600.000
Upvotes: 3
Reputation: 402483
unstack
your result, and then perform a matrix multiplication between the result and its columns with dot
-
i = df.groupby(['buyer_code', 'dollar_amount']).size().unstack()
i.fillna(0).dot(i.columns.astype(float))
buyer_code
A 35000.000
B 670.749
C 600.000
dtype: float64
Or,
i.fillna(0).dot(i.columns.astype(float))\
.reset_index(name='dollar_amount')
buyer_code dollar_amount
0 A 35000.000
1 B 670.749
2 C 600.000
This is alright if you're doing something else with the intermediate groupby
result, necessitating the need for its computation. If not, a groupby
+ sum
makes more sense here.
Upvotes: 2