Reputation: 123
please I think I have a simple question but I can't see any helpful blog showing how to achieve this. I have a python pandas series called "series" and I use series.hist() to visualize the histogram. I would need to visualize directly on the graph the number of occurrences for each bin but I can't find a solution for this.
how can i see on top of each bin a label showing the number of occurrences for each bin?
to be precise, this is my code:
import matplotlib.pyplot as plt
your_bins=10
data = [df_5m_9_4pm.loc['2017-6']['sum_daily_cum_ret'].values]
plt.hist(data, binds = your_bins)
arr = plt.hist(data,bins = your_bins)
for i in range(your_bins):
plt.text(arr[1][i],arr[0][i],str(arr[0][i]))
and if I simply print the variable "data" this is how it looks like:
[array([ 0. , 0.03099187, -0.00417244, ..., -0.00459067,
0.0529476 , -0.0076605 ])]
if I run the code above, I get the error message:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-97-917078981b1d> in <module>()
2 your_bins=10
3 data = [df_5m_9_4pm.loc['2017-6']['sum_daily_cum_ret'].values]
----> 4 plt.hist(data, binds = your_bins)
5 arr = plt.hist(data,bins = your_bins)
6 for i in range(your_bins):
~/anaconda3/lib/python3.6/site-packages/matplotlib/pyplot.py in hist(x, bins, range, density, weights, cumulative, bottom, histtype, align, orientation, rwidth, log, color, label, stacked, normed, hold, data, **kwargs)
3002 histtype=histtype, align=align, orientation=orientation,
3003 rwidth=rwidth, log=log, color=color, label=label,
-> 3004 stacked=stacked, normed=normed, data=data, **kwargs)
3005 finally:
3006 ax._hold = washold
~/anaconda3/lib/python3.6/site-packages/matplotlib/__init__.py in inner(ax, *args, **kwargs)
1708 warnings.warn(msg % (label_namer, func.__name__),
1709 RuntimeWarning, stacklevel=2)
-> 1710 return func(ax, *args, **kwargs)
1711 pre_doc = inner.__doc__
1712 if pre_doc is None:
~/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py in hist(***failed resolving arguments***)
6205 # this will automatically overwrite bins,
6206 # so that each histogram uses the same bins
-> 6207 m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs)
6208 m = m.astype(float) # causes problems later if it's an int
6209 if mlast is None:
~/anaconda3/lib/python3.6/site-packages/numpy/lib/function_base.py in histogram(a, bins, range, normed, weights, density)
665 if mn > mx:
666 raise ValueError(
--> 667 'max must be larger than min in range parameter.')
668 if not np.all(np.isfinite([mn, mx])):
669 raise ValueError(
ValueError: max must be larger than min in range parameter.
Upvotes: 3
Views: 5143
Reputation: 8804
Try this:
import matplotlib.pyplot as plt
import numpy as np
x = np.random.normal(size = 1000)
counts, bins, patches = plt.hist(x, normed=True)
plt.ylabel('Probability')
# Label the raw counts and the percentages below the x-axis...
bin_centers = 0.5 * np.diff(bins) + bins[:-1]
for count, x in zip(counts, bin_centers):
# Label the raw counts
plt.annotate('{:.2f}'.format(count), xy=(x, 0), xycoords=('data', 'axes fraction'),
xytext=(0, 18), textcoords='offset points', va='top', ha='center')
plt.show()
If you want raw occurrences instead of frequencies, just remove normed=True
and maybe change the formatting string.
I might add that you could have solved this too by basically just copying the code in the question linked in the sidebar and changing (0, -18)
to (0, 18)
.
Upvotes: 5