Reputation: 931
I would like to know if there is any way to write an array as a numpy file(.npy) to an AWS S3 bucket directly. I can use np.save
to save a file locally as shown below. But I am looking for a solution to write it directly to S3, without saving locally first.
a = np.array([1, 2, 3, 4])
np.save('/my/localfolder/test1.npy', a)
Upvotes: 12
Views: 11558
Reputation: 1696
I've recently had issues with s3fs dependency conflicts with boto3, so I try to avoid using it. This solution only depends on boto3, does not write to disk, and does not explicitly use pickle.
Saving:
from io import BytesIO
import numpy as np
from urllib.parse import urlparse
import boto3
client = boto3.client("s3")
def to_s3_npy(data: np.array, s3_uri: str):
# s3_uri looks like f"s3://{BUCKET_NAME}/{KEY}"
bytes_ = BytesIO()
np.save(bytes_, data, allow_pickle=True)
bytes_.seek(0)
parsed_s3 = urlparse(s3_uri)
client.upload_fileobj(
Fileobj=bytes_, Bucket=parsed_s3.netloc, Key=parsed_s3.path[1:]
)
return True
Loading:
def from_s3_npy(s3_uri: str):
bytes_ = BytesIO()
parsed_s3 = urlparse(s3_uri)
client.download_fileobj(
Fileobj=bytes_, Bucket=parsed_s3.netloc, Key=parsed_s3.path[1:]
)
bytes_.seek(0)
return np.load(bytes_, allow_pickle=True)
Upvotes: 5
Reputation: 929
You can also use s3fs which is a file system interface to s3, a wrapper around boto
. This solution also uses pickle, so make sure to allow_pickle=True
at np.load
. Refer functions below to both write and read.
import numpy as np
import pickle
from s3fs.core import S3FileSystem
s3 = S3FileSystem()
def saveLabelsToS3(npyArray, name):
with s3.open('{}/{}'.format(bucket, name), 'wb') as f:
f.write(pickle.dumps(npyArray))
def readLabelsFromS3(name):
return np.load(s3.open('{}/{}'.format(bucket, name)), allow_pickle=True)
# Use as below
saveLabelsToS3(labels, 'folder/filename.pkl')
labels = readLabelsFromS3('folder/filename.pkl')
Upvotes: 2
Reputation: 1235
If you want to bypass your local disk and upload directly the data to the cloud, you may want to use pickle
instead of using a .npy
file:
import boto3
import io
import pickle
s3_client = boto3.client('s3')
my_array = numpy.random.randn(10)
# upload without using disk
my_array_data = io.BytesIO()
pickle.dump(my_array, my_array_data)
my_array_data.seek(0)
s3_client.upload_fileobj(my_array_data, 'your-bucket', 'your-file.pkl')
# download without using disk
my_array_data2 = io.BytesIO()
s3_client.download_fileobj('your-bucket', 'your-file.pkl', my_array_data2)
my_array_data2.seek(0)
my_array2 = pickle.load(my_array_data2)
# check that everything is correct
numpy.allclose(my_array, my_array2)
Documentation:
Upvotes: 6