Reputation: 632
I am trying to implement a Bernoulli Naive Bayes
Classifier from scikit-learn
library for text classification. But I am stuck with this error
ValueError: Expected 2D array, got 1D array instead:
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
Error in detail
Traceback (most recent call last):
File "BNB.py", line 27, in <module>
clf.fit(train_data, train_labels)
File "/home/atinesh/.local/lib/python3.6/site-packages/sklearn/naive_bayes.py", line 579, in fit
X, y = check_X_y(X, y, 'csr')
File "/home/atinesh/.local/lib/python3.6/site-packages/sklearn/utils/validation.py", line 573, in check_X_y
ensure_min_features, warn_on_dtype, estimator)
File "/home/atinesh/.local/lib/python3.6/site-packages/sklearn/utils/validation.py", line 441, in check_array
"if it contains a single sample.".format(array))
ValueError: Expected 2D array, got 1D array instead:
array=['Apple' 'Banana' 'Cherry' 'Grape' 'Guava' 'Lemon' 'Mangos' 'Orange'
'Strawberry' 'Watermelon' 'Potato' 'Spinach' 'Carrot' 'Onion' 'Cabbage'
'Barccoli' 'Tomatoe' 'Pea' 'Cucumber' 'Eggplant'].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
"BNB.py"
from sklearn.naive_bayes import BernoulliNB
dataPos = ['Apple', 'Banana', 'Cherry', 'Grape', 'Guava', 'Lemon', 'Mangos',
'Orange', 'Strawberry', 'Watermelon']
dataNeg = ['Potato', 'Spinach', 'Carrot', 'Onion', 'Cabbage', 'Barccoli',
'Tomatoe', 'Pea', 'Cucumber', 'Eggplant']
def get_data():
examples = []
labels = []
for item in dataPos:
examples.append(item)
labels.append('positive')
for item in dataNeg:
examples.append(item)
labels.append('negative')
return examples, labels
train_data, train_labels = get_data()
# Train
clf = BernoulliNB()
clf.fit(train_data, train_labels)
# Predict
print(clf.predict('Apple Banana'))
print(clf.predict_proba('Apple Banana'))
Upvotes: 0
Views: 840
Reputation: 6729
I would recommend use the LabelBinarizer in sklearn
from sklearn.naive_bayes import BernoulliNB
import numpy as np
from sklearn import preprocessing
dataPos = ['Apple', 'Banana', 'Cherry', 'Grape', 'Guava', 'Lemon', 'Mangos',
'Orange', 'Strawberry', 'Watermelon']
dataNeg = ['Potato', 'Spinach', 'Carrot', 'Onion', 'Cabbage', 'Barccoli',
'Tomatoe', 'Pea', 'Cucumber', 'Eggplant']
Y=[0]*10+[1]*10
Y=np.array(Y)
lb = preprocessing.LabelBinarizer()
X = lb.fit_transform(dataPos+dataNeg)
clf = BernoulliNB()
clf.fit(X, Y)
test_sample = lb.transform([['Apple'],['Banana'],['Spinach']])
print clf.predict(test_sample)
Your code errors out because when doing clf.fit(X,Y)
, X needs to be 2d array. Each row corresponding to a feature vector.
Upvotes: 3
Reputation: 553
If you pass simple python lists to scikit_learn, it will be interpreted as an array of shape (n, ). What you might want to do is convert your lists of both examples and labels into numpy array and reshape/resize them into line vectors with a shape of (n, 1). For example:
import numpy as np
examples = np.array(['Apple', 'Banana', 'Cherry', 'Grape', 'Guava', 'Lemon', 'Mangos','Orange', 'Strawberry', 'Watermelon'])
examples.shape # returns (10, ), a 1D-array
examples.resize((10,1))
examples.shape # returns (10, 1), which is a 2-D array
Or for a more simple solution, you could simply provide the fit method with:
clf.fit([train_data], [train_labels])
But since you already have a dedicated method to format the data why not use numpy in there and return lists with the correct dimensions.
Hope this helps in your endeavor.
Upvotes: 0