Reputation: 108
When attempting to plot an exponential curve to a set of data:
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import style
from matplotlib import pylab
import numpy as np
from scipy.optimize import curve_fit
x = np.array([30,40,50,60])
y = np.array([0.027679854,0.055639098,0.114814815,0.240740741])
def exponenial_func(x, a, b, c):
return a*np.exp(-b*x)+c
popt, pcov = curve_fit(exponenial_func, x, y, p0=(1, 1e-6, 1))
xx = np.linspace(10,60,1000)
yy = exponenial_func(xx, *popt)
plt.plot(x,y,'o', xx, yy)
pylab.title('Exponential Fit')
ax = plt.gca()
fig = plt.gcf()
plt.xlabel(r'Temperature, C')
plt.ylabel(r'1/Time, $s^-$$^1$')
plt.show()
Graph for the above code:
However when I add the data point 20
(x) and 0.015162344
(y):
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import style
from matplotlib import pylab
import numpy as np
from scipy.optimize import curve_fit
x = np.array([20,30,40,50,60])
y = np.array([0.015162344,0.027679854,0.055639098,0.114814815,0.240740741])
def exponenial_func(x, a, b, c):
return a*np.exp(-b*x)+c
popt, pcov = curve_fit(exponenial_func, x, y, p0=(1, 1e-6, 1))
xx = np.linspace(20,60,1000)
yy = exponenial_func(xx, *popt)
plt.plot(x,y,'o', xx, yy)
pylab.title('Exponential Fit')
ax = plt.gca()
fig = plt.gcf()
plt.xlabel(r'Temperature, C')
plt.ylabel(r'1/Time, $s^-$$^1$')
plt.show()
The above code generates the error
'RuntimeError: Optimal parameters not found: Number of calls to function has reached maxfev = 800.'
If maxfev
is set to maxfev = 1300
popt, pcov = curve_fit(exponenial_func, x, y, p0=(1, 1e-6, 1),maxfev=1300)
The graph is plotted but does not fit the curve correctly. Graph from above code change, maxfev = 1300
:
I think this is because points 20 and 30 a too close to each other? For comparison, excel plots the data like this:
How can I plot this curve correctly?
Upvotes: 3
Views: 3456
Reputation: 25997
From your data it is obvious that you need a positive exponent, therefore, b
needs to be negative as you use a*np.exp(-b*x) + c
as the underlying model. However, you start with a positive initial value for b
which most likely causes the issues.
If you change
popt, pcov = curve_fit(exponenial_func, x, y, p0=(1, 1e-6, 1))
to
popt, pcov = curve_fit(exponenial_func, x, y, p0=(1, -1e-6, 1))
it works fine and gives the expected outcome.
Alternatively, you could also change your equation to
return a*np.exp(b*x) + c
and start with the same initial values as you had.
Here is the entire code:
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
def exponenial_func(x, a, b, c):
return a*np.exp(b*x)+c
x = np.array([20, 30, 40, 50, 60])
y = np.array([0.015162344, 0.027679854, 0.055639098, 0.114814815, 0.240740741])
popt, pcov = curve_fit(exponenial_func, x, y, p0=(1, 1e-6, 1))
xx = np.linspace(20, 60, 1000)
yy = exponenial_func(xx, *popt)
# please check whether that is correct
r2 = 1. - sum((exponenial_func(x, *popt) - y) ** 2) / sum((y - np.mean(y)) ** 2)
plt.plot(x, y, 'o', xx, yy)
plt.title('Exponential Fit')
plt.xlabel(r'Temperature, C')
plt.ylabel(r'1/Time, $s^-$$^1$')
plt.text(30, 0.15, "equation:\n{:.4f} exp({:.4f} x) + {:.4f}".format(*popt))
plt.text(30, 0.1, "R^2:\n {}".format(r2))
plt.show()
Upvotes: 5