DaniCee
DaniCee

Reputation: 3207

R: Opposite to aggregate using tidytext::unnest_tokens. Multiple variables and upper case

Following up on this question, I want to perform a task opposite to aggregate (or the data.table equivalent as in the MWE below), so that I obtain df1 again, starting from df2.

The task here then is to reproduce df1 from df2. For this, I tried tidytext::unnest_tokens, but I cannot figure out how to make it work properly when more than one variable have to be "dis-aggregated" (models, countries, and years).

It would be nice to retain the original upper case of the variables as well.

Any elegant solution different from tidytext::unnest_tokens would be accepted! Thanks!

Here is the MWE:

####MWE
library(data.table)
library(tidytext)
df1 <- data.frame(brand=c(rep('A',4), rep('B',5), rep('C',3), rep('D',2),'E'),
                  model=c('A1','A1','A2','A3','B1','B2','B2','B2','B3','C1','C1','C2','D1','D2','E1'),
                  country=c('P','G','S','S','P','P','F','I','D','S','F','F','G','I','S'),
                  year=c(91,92,93,94,98,95,87,99,00,86,92,92,93,95,99))
df1
dd <- data.table(df1)
df2 <- as.data.frame(dd[, list(models=paste(model, collapse=' /// '),
                               countries=paste(country, collapse=' /// '),
                               years=paste(year, collapse=' /// ')),
                        by=list(brand=brand)])
df2
df1b <- df2 %>% 
  unnest_tokens(model, models, token = "regex", pattern = " /// ")
df1b
####

Upvotes: 3

Views: 391

Answers (2)

Julia Silge
Julia Silge

Reputation: 11643

I would do this with dplyr::mutate_at(), stringr::str_split(), and tidyr::unnest().

library(tidyverse)  

df2 %>%
  mutate_at(vars(models:years), ~ str_split(., pattern = " /// ")) %>%
  unnest()

#> # A tibble: 15 x 4
#>    brand models countries years
#>    <chr> <chr>  <chr>     <chr>
#>  1 A     A1     P         91   
#>  2 A     A1     G         92   
#>  3 A     A2     S         93   
#>  4 A     A3     S         94   
#>  5 B     B1     P         98   
#>  6 B     B2     P         95   
#>  7 B     B2     F         87   
#>  8 B     B2     I         99   
#>  9 B     B3     D         0    
#> 10 C     C1     S         86   
#> 11 C     C1     F         92   
#> 12 C     C2     F         92   
#> 13 D     D1     G         93   
#> 14 D     D2     I         95   
#> 15 E     E1     S         99

Notice that the last column is still of type chr here so you'll need to use one more mutate() if you want to get it back to numeric.

Upvotes: 2

akrun
akrun

Reputation: 887501

We can use separate_rows

library(tidyverse)
res <- df2 %>% 
         separate_rows(models, countries, years, convert = TRUE) %>%
         rename_all(funs(paste0(names(df1)))) %>% #just to make the column names same as df1
         mutate(year = as.numeric(year)) #convert to numeric to match df1 column type
all.equal(res, df1 %>% 
                  mutate_at(2:3, as.character), check.attributes = FALSE )
#[1] TRUE

Upvotes: 1

Related Questions