Reputation: 170
I am developing in Python an application which uses Tensorflow and another model which with GPUs. I have a PC with many GPUs (3xNVIDIA GTX1080), due to the fact that all models try to use all available GPUs, resulting in OUT_OF_MEMORY_ERROR, I have found that you can assign a specific GPU to a Python script with
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
Here I attach a snippet of my FCN class
class FCN:
def __init__(self):
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
self.keep_probability = tf.placeholder(tf.float32, name="keep_probabilty")
self.image = tf.placeholder(tf.float32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 3], name="input_image")
self.annotation = tf.placeholder(tf.int32, shape=[None, IMAGE_SIZE, IMAGE_SIZE, 1], name="annotation")
self.pred_annotation, logits = inference(self.image, self.keep_probability)
tf.summary.image("input_image", self.image, max_outputs=2)
tf.summary.image("ground_truth", tf.cast(self.annotation, tf.uint8), max_outputs=2)
tf.summary.image("pred_annotation", tf.cast(self.pred_annotation, tf.uint8), max_outputs=2)
self.loss = tf.reduce_mean((tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
labels=tf.squeeze(self.annotation,
squeeze_dims=[3]),
name="entropy")))
tf.summary.scalar("entropy", self.loss)
...
Inside the same file FCN.py
, I have a little main which uses the class and when Tensorflow prints the output I can see that only 1 GPU is used, as I expect.
if __name__ == "__main__":
fcn = FCN()
fcn.train_model()
images_dir = '/home/super/datasets/MeterDataset/full-dataset-gas-images/'
for img_file in os.listdir(images_dir):
fcn.segment(os.path.join(images_dir, img_file))
Output:
2018-01-09 11:31:57.351029: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 0 with properties:
name: GeForce GTX 1080
major: 6 minor: 1 memoryClockRate (GHz) 1.7335
pciBusID 0000:09:00.0
Total memory: 7.92GiB
Free memory: 7.60GiB
2018-01-09 11:31:57.351047: I tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0
2018-01-09 11:31:57.351051: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0: Y
2018-01-09 11:31:57.351057: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:09:00.0)
The problem arises when I try to instantiate the FCN object from another script.
def main(args):
start_time = datetime.now()
font = cv2.FONT_HERSHEY_SIMPLEX
results_file = "../results.txt"
if os.path.exists(results_file):
os.remove(results_file)
results_file = open(results_file, "a")
fcn = FCN()
Here the creation of the object always uses all 3 GPUs instead of using the only assigned into the __init__()
method.
Here the undesired output:
2018-01-09 11:41:02.537548: I
tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0 1 2
2018-01-09 11:41:02.537555: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0: Y Y Y
2018-01-09 11:41:02.537558: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 1: Y Y Y
2018-01-09 11:41:02.537561: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 2: Y Y Y
2018-01-09 11:41:02.537567: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:0b:00.0)
2018-01-09 11:41:02.537571: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:1) -> (device: 1, name: GeForce GTX 1080, pci bus id: 0000:09:00.0)
2018-01-09 11:41:02.537574: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:2) -> (device: 2, name: GeForce GTX 1080, pci bus id: 0000:05:00.0)
Upvotes: 6
Views: 5086
Reputation: 53758
Here's what you can do:
Run your script with CUDA_VISIBLE_DEVICES
environment variable already setup, as discussed here:
CUDA_VISIBLE_DEVICES=1 python another_script.py
Provide an explicit configuration to the Session
constructor:
config = tf.ConfigProto(device_count={'GPU': 1})
sess = tf.Session(config=config)
... to force tensorflow use only one GPU, not matter how many there are available. You can also set fine-grained list of devices via visible_device_list
(see config.proto
for the details).
Upvotes: 8