Reputation: 86
I have two dataframes A and B:
For example:
import pandas as pd
import numpy as np
In [37]:
A = pd.DataFrame({'Start': [10, 11, 20, 62, 198], 'End': [11, 11, 35, 70, 200]})
A[["Start","End"]]
Out[37]:
Start End
0 10 11
1 11 11
2 20 35
3 62 70
4 198 200
In [38]:
B = pd.DataFrame({'Start': [8, 5, 8, 60], 'End': [10, 90, 13, 75], 'Info': ['some_info0','some_info1','some_info2','some_info3']})
B[["Start","End","Info"]]
Out[38]:
Start End Info
0 8 10 some_info0
1 5 90 some_info1
2 8 13 some_info2
3 60 75 some_info3
I would like to add column info to dataframe A based on if the interval (Start-End) of A overlaps with the interval of B. In case, the A interval overlaps with more than one B interval, the info corresponding to the shorter interval should be added.
I have been looking arround how to manage this issue and I have found kind of similar questions but most of their answers are using iterrows()
which in my case, as I am dealing with huge dataframes is not viable.
I would like something like:
A.merge(B,on="overlapping_interval", how="left")
And then drop duplicates keeping the info coming from the shorter interval.
The output should look like this:
In [39]:
C = pd.DataFrame({'Start': [10, 11, 20, 62, 198], 'End': [11, 11, 35, 70, 200], 'Info': ['some_info0','some_info2','some_info1','some_info3',np.nan]})
C[["Start","End","Info"]]
Out[39]:
Start End Info
0 10 11 some_info0
1 11 11 some_info2
2 20 35 some_info1
3 62 70 some_info3
4 198 200 NaN
I have found this question really interesting as it suggests the posibility of solving this issue using pandas Interval object. But after lots attempts I have not managed to solve it.
Any ideas?
Upvotes: 1
Views: 1126
Reputation: 1017
I would suggest to do a function then apply on the rows:
First I compute the delta (End - Start) in B
for sorting purpose
B['delta'] = B.End - B.Start
Then a function to get information:
def get_info(x):
#Fully included
c0 = (x.Start >= B.Start) & (x.End <= B.End)
#start lower, end include
c1 = (x.Start <= B.Start) & (x.End >= B.Start)
#start include, end higher
c2 = (x.Start <= B.End) & (x.End >= B.End)
#filter with conditions and sort by delta
_B = B[c0|c1|c2].sort_values('delta',ascending=True)
return None if len(_B) == 0 else _B.iloc[0].Info #None if no info corresponding
Then you can apply this function to A
:
A['info'] = A.apply(lambda x : get_info(x), axis='columns')
print(A)
Start End info
0 10 11 some_info0
1 11 11 some_info2
2 20 35 some_info1
3 62 70 some_info3
4 198 200 None
Note:
pd.Interval
, make your own conditions. cx
are your intervals definitions, change them to get the exact expected behaviourUpvotes: 1