Reputation: 395
I have a simple R script to create a forecast based on a file. Data has been recorded since 2014 but I am having trouble trying to accomplish below two goals:
Here is the link to the dataset and below you will find the code made by me so far.
# Load required libraries
library(forecast)
library(ggplot2)
# Load dataset
emea <- read.csv(file="C:/Users/nsoria/Downloads/AMS Globales/EMEA_Depuy_Finanzas.csv", header=TRUE, sep=';', dec=",")
# Create time series object
ts_fin <- ts(emea$Value, frequency = 26, start = c(2014,11))
# Pull out the seasonal, trend, and irregular components from the time series
model <- stl(ts_fin, s.window = "periodic")
# Predict the next 3 bi weeks of tickets
pred <- forecast(model, h = 5)
# Plot the results
plot(pred, include = 5, showgap = FALSE, main = "Ticket amount", xlab = "Timeframe", ylab = "Quantity")
I appreciate any help and suggestion to my two points and a clean plot.
Thanks in advance.
Edit 01/10 - Issue 1: I added the screenshot output for suggested code. Plot1
Edit 01/10 - Issue 2: Once transformed with below code, it somehow miss the date count and mess with the results. Please see two screenshots and compare the last value.
Upvotes: 3
Views: 1911
Reputation: 28331
Plotting using ggplot2
w/ ggfortify
, tidyverse
, lubridate
and scales
packages
library(lubridate)
library(tidyverse)
library(scales)
library(ggfortify)
# Convert pred from list to data frame object
df1 <- fortify(pred) %>% as_tibble()
# Convert ts decimal time to Date class
df1$Date <- as.Date(date_decimal(df1$Index), "%Y-%m-%d")
str(df1)
# Remove Index column and rename other columns
# Select only data pts after 2017
df1 <- df1 %>%
select(-Index) %>%
filter(Date >= as.Date("2017-01-01")) %>%
rename("Low95" = "Lo 95",
"Low80" = "Lo 80",
"High95" = "Hi 95",
"High80" = "Hi 80",
"Forecast" = "Point Forecast")
df1
### Updated: To connect the gap between the Data & Forecast,
# assign the last non-NA row of Data column to the corresponding row of other columns
lastNonNAinData <- max(which(complete.cases(df1$Data)))
df1[lastNonNAinData, !(colnames(df1) %in% c("Data", "Fitted", "Date"))] <- df1$Data[lastNonNAinData]
# Or: use [geom_segment](http://ggplot2.tidyverse.org/reference/geom_segment.html)
plt1 <- ggplot(df1, aes(x = Date)) +
ggtitle("Ticket amount") +
xlab("Time frame") + ylab("Quantity") +
geom_ribbon(aes(ymin = Low95, ymax = High95, fill = "95%")) +
geom_ribbon(aes(ymin = Low80, ymax = High80, fill = "80%")) +
geom_point(aes(y = Data, colour = "Data"), size = 4) +
geom_line(aes(y = Data, group = 1, colour = "Data"),
linetype = "dotted", size = 0.75) +
geom_line(aes(y = Fitted, group = 2, colour = "Fitted"), size = 0.75) +
geom_line(aes(y = Forecast, group = 3, colour = "Forecast"), size = 0.75) +
scale_x_date(breaks = scales::pretty_breaks(), date_labels = "%b %y") +
scale_colour_brewer(name = "Legend", type = "qual", palette = "Dark2") +
scale_fill_brewer(name = "Intervals") +
guides(colour = guide_legend(order = 1), fill = guide_legend(order = 2)) +
theme_bw(base_size = 14)
plt1
Upvotes: 3