Reputation: 307
I am trying to use the argmax result of tf.nn.max_pool_with_argmax()
to index another tensor. For simplicity, let's say I am trying to implement the following:
output, argmax = tf.nn.max_pool_with_argmax(input, ksize, strides, padding)
tf.assert_equal(input[argmax],output)
Now my question is how do I implement the necessary indexing operation input[argmax]
to achieve the desired result? I am guessing this involves some usage of tf.gather_nd()
and related calls, but I cannot figure it out. If necessary, we could assume that input has [BatchSize, Height, Width, Channel]
dimensions.
Thx for your help!
Mat
Upvotes: 2
Views: 1846
Reputation: 19
This small snippet works:
def get_results(data,other_tensor):
pooled_data, indices = tf.nn.max_pool_with_argmax(data,ksize=[1,ksize,ksize,1],strides=[1,stride,stride,1],padding='VALID',include_batch_in_index=True)
b,w,h,c = other_tensor.get_shape.as_list()
other_tensor_pooled = tf.gather(tf.reshape(other_tensor,shape= [b*w*h*c,]),indices)
return other_tensor_pooled
The above indices
can be used to index the tensor. This function actually returns flattened indices and to use it with anything with batch_size > 1
you need to pass include_batch_in_index
as True
in-order to get proper results. I am assuming here that othertensor
you has the same batch size as data.
Upvotes: 1
Reputation: 1
I am doing it in this way:
def max_pool(input, ksize, strides,padding):
output, arg_max = tf.nn.max_pool_with_argmax(input=input,ksize=ksize,strides=strides,padding=padding)
shape=tf.shape(output)
output1=tf.reshape(tf.gather(tf.reshape(input,[-1]),arg_max),shape)
err=tf.reduce_sum(tf.square(tf.subtract(output,output1)))
return output1, err
Upvotes: 0
Reputation: 307
I found a solution using tf.gather_nd
and it works, although it seems not so elegant. I used the function unravel_argmax
that was posted here.
def unravel_argmax(argmax, shape):
output_list = []
output_list.append(argmax // (shape[2] * shape[3]))
output_list.append(argmax % (shape[2] * shape[3]) // shape[3])
return tf.stack(output_list)
def max_pool(input, ksize, strides,padding):
output, arg_max = tf.nn.max_pool_with_argmax(input=input,ksize=ksize,strides=strides,padding=padding)
shape = input.get_shape()
arg_max = tf.cast(arg_max,tf.int32)
unraveld = unravel_argmax(arg_max,shape)
indices = tf.transpose(unraveld,(1,2,3,4,0))
channels = shape[-1]
bs = tf.shape(iv.m)[0]
t1 = tf.range(channels,dtype=arg_max.dtype)[None, None, None, :, None]
t2 = tf.tile(t1,multiples=(bs,) + tuple(indices.get_shape()[1:-2]) + (1,1))
t3 = tf.concat((indices,t2),axis=-1)
t4 = tf.range(tf.cast(bs, dtype=arg_max.dtype))
t5 = tf.tile(t4[:,None,None,None,None],(1,) + tuple(indices.get_shape()[1:-2].as_list()) + (channels,1))
t6 = tf.concat((t5, t3), -1)
return tf.gather_nd(input,t6)
In case anyone has a more elegant solution, I'd still be curious to know.
Mat
Upvotes: 2