Reputation: 361
I have 3 different csv files and I'm looking for concat the values. The only condition I need is that the first csv dataframe must be in column A of the new csv, the second csv dataframe in the column B and the Thirth csv dataframe in the C Column. The quantity of rows is the same for all csv files.
Also I need to change the three headers to ['año_pasado','mes_pasado','este_mes']
import pandas as pd
df = pd.read_csv('año_pasado_subastas2.csv', sep=',')
df1 = pd.read_csv('mes_pasado_subastas2.csv', sep=',')
df2 = pd.read_csv('este_mes_subastas2.csv', sep=',')
df1
>>>
Subastas
166665859
237944547
260106086
276599496
251813654
223790056
179340698
177500866
239884764
234813107
df2
>>>
Subastas
212003586
161813617
172179313
209185016
203804433
198207783
179410798
156375658
130228140
124964988
df3
>>>
Subastas
142552750
227514418
222635042
216263925
196209965
140984000
139712089
215588302
229478041
222211457
The output that I need is:
año_pasado,mes_pasado,este_mes
166665859,124964988,142552750
237944547,161813617,227514418
260106086,172179313,222635042
276599496,209185016,216263925
251813654,203804433,196209965
223790056,198207783,140984000
179340698,179410798,139712089
177500866,156375658,215588302
239884764,130228140,229478041
234813107,124964988,222211457
Upvotes: 2
Views: 253
Reputation: 862481
I think you need concat
of Series
created by squeeze=True
if one column data only or selecting columns and for new columns names use parameter keys
:
df = pd.read_csv('año_pasado_subastas2.csv', squeeze=True)
df1 = pd.read_csv('mes_pasado_subastas2.csv', squeeze=True)
df2 = pd.read_csv('este_mes_subastas2.csv', squeeze=True)
cols = ['año_pasado','mes_pasado','este_mes']
df = pd.concat([df, df1, df2], keys = cols, axis=1)
Or:
df = pd.read_csv('año_pasado_subastas2.csv')
df1 = pd.read_csv('mes_pasado_subastas2.csv')
df2 = pd.read_csv('este_mes_subastas2.csv')
cols = ['año_pasado','mes_pasado','este_mes']
df = pd.concat([df['Subastas'], df1['Subastas'], df2['Subastas']], keys = cols, axis=1)
print (df)
año_pasado mes_pasado este_mes
0 166665859 212003586 142552750
1 237944547 161813617 227514418
2 260106086 172179313 222635042
3 276599496 209185016 216263925
4 251813654 203804433 196209965
5 223790056 198207783 140984000
6 179340698 179410798 139712089
7 177500866 156375658 215588302
8 239884764 130228140 229478041
9 234813107 124964988 222211457
Upvotes: 1