Reputation: 15
Reading through a text book, I have come away with the impression that overriding virtual functions only works when using a pointer or reference to the object. The book demonstrates the creation of a pointer of the base class type pointed to an object the derived class type, and uses that to demonstrate a virtual function override.
However, I've now come across the following. Not a pointer in sight, and I was expecting that making function1 virtual would not make a difference, but it does. I'm clearly missing something here and would appreciate an explanation as to what it is. Sorry if my explanation isn't clear; also I expect this has been asked before, but was unable to come up with what to search on.
using namespace std;
class ClassA
{
public:
void function1(); // virtual or not?
void function2();
};
class ClassB : public ClassA
{
public:
void function1();
};
int main()
{
ClassA objA;
ClassB objB;
objA.function1();
cout << "\n";
objA.function2();
cout << "\n";
objB.function1();
cout << "\n";
objB.function2(); // Fourth call
cout << "\n";
}
void ClassA::function1() { cout << "ClassA::function1\n"; }
void ClassA::function2()
{
cout << "ClassA::function2\n";
function1(); // For the fourth call ClassA::function1()
// is called if ClassA::function1() is not virtual
// but ClassB:function1() is called if it is. Why?
}
void ClassB::function1() { cout << "ClassB::function1\n"; }
Many thanks for any help.
Upvotes: 0
Views: 929
Reputation: 15521
It's not a virtual function as it is not marked as one. It's simply a public function accessible from a derived class / object. Your code is not exhibiting polymorphic behavior either. That being said none of your functions are virtual nor overriding. Trivial example for polymorphic installation would be:
#include <iostream>
#include <memory>
class ClassA {
public:
virtual void function1() { // now virtual
std::cout << "ClassA::function1\n";
}
};
class ClassB : public ClassA {
public:
void function1() override {
std::cout << "ClassB::function1\n";
}
};
int main() {
std::unique_ptr<ClassA> p = std::make_unique<ClassB>();
p->function1(); // now calls class B function, overrides class A behavior
}
or through references:
int main() {
ClassB objB;
ClassA& ro = objB;
ro.function1(); // now calls class B function, overrides class A behavior
}
There is little benefit in marking functions as virtual
and override
if you are not utilizing polymorphic behaviour.
Upvotes: 1
Reputation: 6125
Example of virtual without explicit pointers :
class A
{
public:
virtual void f1()
{
cout << "A::f1()" << endl;
}
void f2()
{
f1();
}
};
class B : public A
{
public:
void f1() override
{
cout << "B::f1()" << endl;
}
};
int main()
{
A a;
B b;
a.f2();
b.f2();
}
Upvotes: 0
Reputation: 15172
function1 is not virtual, obj2 calls the classB function1 because it is a clasB object, the compiler first looks at the most-derived type for a function, then the leftmost base (and on through the bases of that base), and then the next base in multiple inheritance situations. If you took a classA * to obj2 and called function1 it would call the classA function1.
Upvotes: 0