SumNeuron
SumNeuron

Reputation: 5188

Pandas: GroupBy to DataFrame

Referring to this very popular question regarding groupby to dataframe. Unfortunately, I do not think this particular use case is the most useful, here's mine:

Suppose you have what could be a hierarchical dataset in a flattened form, e.g.

     key    val 
0    'a'    2
1    'a'    1
2    'b'    3
3    'b'    4

what I wish to do is convert that dataframe to this structure

    'a'  'b'
0    2    3
1    1    4

I thought this would be as simple as pd.DataFrame(df.groupby('key').groups) but it isn't.

How can I make this transformation?

Upvotes: 2

Views: 3289

Answers (5)

Tai
Tai

Reputation: 7984

Think this should work. Note the example is different from OP's. There are duplicates in the example.

df = pd.DataFrame({'key': {0: "'a'", 1: "'a'", 2: "'b'", 3: "'b'", 4: "'a'"}, 
                   'val': {0: 2, 1: 1, 2: 3, 3: 4, 4: 2}})


df_wanted = pd.DataFrame.from_dict(
                df.groupby("key")["val"].apply(list).to_dict(), orient='index'
            ).transpose()


    'a'     'b'
0   2.0     3.0
1   1.0     4.0
2   2.0     NaN

df.groupby("key")["val"].apply(list).to_dict() creates a dictionary {"'a'": [2, 1, 2], "'b'": [3, 4]}. Then, we transfer the dictionary to a DataFrame object.

We use DataFrame.from_dict function. Because the dictionary contains different lengths, we need to pass in an extra argument orient='index' and then do transpose() in the end.

Reference

Creating dataframe from a dictionary where entries have different lengths

Upvotes: 2

Scott Boston
Scott Boston

Reputation: 153460

Let's use set_index and unstack with cumcount:

df.set_index([df.groupby('key').cumcount(),'key'])['val']\
  .unstack().rename_axis(None,1)

Output:

   'a'  'b'
0    2    3
1    1    4

Upvotes: 0

BENY
BENY

Reputation: 323226

df.assign(index=df.groupby('key').cumcount()).pivot('index','key','val')
Out[369]: 
key    'a'  'b'
index          
0        2    3
1        1    4

Upvotes: 7

MaxU - stand with Ukraine
MaxU - stand with Ukraine

Reputation: 210832

what about the following approach?

In [134]: pd.DataFrame(df.set_index('val').groupby('key').groups)
Out[134]:
   a  b
0  2  3
1  1  4

Upvotes: 3

SumNeuron
SumNeuron

Reputation: 5188

I'm new to Pandas but this seems to work:

gb = df.groupby('key')
k = 'val'
pd.DataFrame(
    [gb.get_group(x)[k].tolist() for x in gb.groups], 
    index=[x for x in gb.groups]
).transpose()

Upvotes: 0

Related Questions