Reputation: 3277
I have a Dataframe like this:
+--+--------+--------+----+-------------+------------------------------+
|id|name |lastname|age |timestamp |creditcards |
+--+--------+--------+----+-------------+------------------------------+
|1 |michel |blanc |35 |1496756626921|[[hr6,3569823], [ee3,1547869]]|
|2 |peter |barns |25 |1496756626551|[[ye8,4569872], [qe5,3485762]]|
+--+--------+--------+----+-------------+------------------------------+
where the schema of my df is like below:
root
|-- id: string (nullable = true)
|-- name: string (nullable = true)
|-- lastname: string (nullable = true)
|-- age: string (nullable = true)
|-- timestamp: string (nullable = true)
|-- creditcards: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- id: string (nullable = true)
| | |-- number: string (nullable = true)
I would like to convert each line to a json string knowing my schema. So this dataframe would have one column string containing the json. first line should be like this:
{
"id":"1",
"name":"michel",
"lastname":"blanc",
"age":"35",
"timestamp":"1496756626921",
"creditcards":[
{
"id":"hr6",
"number":"3569823"
},
{
"id":"ee3",
"number":"1547869"
}
]
}
and the secone line of the dataframe should be like this:
{
"id":"2",
"name":"peter",
"lastname":"barns",
"age":"25",
"timestamp":"1496756626551",
"creditcards":[
{
"id":"ye8",
"number":"4569872"
},
{
"id":"qe5",
"number":"3485762"
}
]
}
my goal is not to write the dataframe to json file. My goal is to convert df1 to a second df2 in order to push each json line of df2 to kafka topic I have this code to create the dataframe:
val line1 = """{"id":"1","name":"michel","lastname":"blanc","age":"35","timestamp":"1496756626921","creditcards":[{"id":"hr6","number":"3569823"},{"id":"ee3","number":"1547869"}]}"""
val line2 = """{"id":"2","name":"peter","lastname":"barns","age":"25","timestamp":"1496756626551","creditcards":[{"id":"ye8","number":"4569872"}, {"id":"qe5","number":"3485762"}]}"""
val rdd = sc.parallelize(Seq(line1, line2))
val df = sqlContext.read.json(rdd)
df show false
df printSchema
Do you have any idea?
Upvotes: 0
Views: 6424
Reputation: 22439
If all you need is a single-column DataFrame/Dataset with each column value representing each row of the original DataFrame in JSON, you can simply apply toJSON
to your DataFrame, as in the following:
df.show
// +---+------------------------------+---+--------+------+-------------+
// |age|creditcards |id |lastname|name |timestamp |
// +---+------------------------------+---+--------+------+-------------+
// |35 |[[hr6,3569823], [ee3,1547869]]|1 |blanc |michel|1496756626921|
// |25 |[[ye8,4569872], [qe5,3485762]]|2 |barns |peter |1496756626551|
// +---+------------------------------+---+--------+------+-------------+
val dsJson = df.toJSON
// dsJson: org.apache.spark.sql.Dataset[String] = [value: string]
dsJson.show
// +--------------------------------------------------------------------------+
// |value |
// +--------------------------------------------------------------------------+
// |{"age":"35","creditcards":[{"id":"hr6","number":"3569823"},{"id":"ee3",...|
// |{"age":"25","creditcards":[{"id":"ye8","number":"4569872"},{"id":"qe5",...|
// +--------------------------------------------------------------------------+
[UPDATE]
To add name
as an additional column, you can extract it from the JSON column using from_json
:
val result = dsJson.withColumn("name", from_json($"value", df.schema)("name"))
result.show
// +--------------------+------+
// | value| name|
// +--------------------+------+
// |{"age":"35","cred...|michel|
// |{"age":"25","cred...| peter|
// +--------------------+------+
Upvotes: 6
Reputation: 279
For that, you can directly convert your dataframe to a Dataset of JSON string using
val jsonDataset: Dataset[String] = df.toJSON
You can convert it into a dataframe using
val jsonDF: DataFrame = jsonDataset.toDF
Here the json will be alphabetically ordered so the output of
jsonDF show false
will be
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|value |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|{"age":"35","creditcards":[{"id":"hr6","number":"3569823"},{"id":"ee3","number":"1547869"}],"id":"1","lastname":"blanc","name":"michel","timestamp":"1496756626921"}|
|{"age":"25","creditcards":[{"id":"ye8","number":"4569872"},{"id":"qe5","number":"3485762"}],"id":"2","lastname":"barns","name":"peter","timestamp":"1496756626551"} |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Upvotes: 1