Reputation:
For the following dataframe:
every group of c
should have three values of b
. The second value of a
should be the average of the first and third value of a
.
What is the easiest way to insert the "missing" row with a=48
, b=42
, c=4
between index = 0
and index = 1
?
df_x = pd.DataFrame({"a": [47, 49, 55, 54, 53, 24, 27, 30], "b": [41, 43, 51, 52, 53, 41, 42, 43], "c": [4, 4, 5, 5, 5, 4, 4, 4]})
df_x
Out[14]:
a b c
0 47 41 4
1 49 43 4
2 55 51 5
3 54 52 5
4 53 53 5
5 24 41 4
6 27 42 4
7 30 43 4
If I use groupby('c').transform(my_func)
or groupby('c').apply(my_func)
, I face the situation that the first call to my function my_func
is done twice.
Upvotes: 1
Views: 186
Reputation:
a semipathetic solution would be the following.
Does anybody have ideas how to make the for loop more efficient / respectively avoid it at all?
import pandas as pd
df_x = pd.DataFrame({"a": [47, 49, 55, 54, 53, 24, 27, 30], "b": [41, 43, 51, 52, 53, 41, 42, 43], "c": [4, 4, 5, 5, 5, 4, 4, 4]})
df_x
Out[11]:
a b c
0 47 41 4
1 49 43 4
2 55 51 5
3 54 52 5
4 53 53 5
5 24 41 4
6 27 42 4
7 30 43 4
# make new column that allows group by
df_x['cumsum']=(df_x.c != df_x.c.shift()).cumsum()
df_x
Out[14]:
a b c cumsum
0 47 41 4 1
1 49 43 4 1
2 55 51 5 2
3 54 52 5 2
4 53 53 5 2
5 24 41 4 3
6 27 42 4 3
7 30 43 4 3
# introduce index spreaded by 10
df_x['index10'] = df_x.index * 10
print(df_x)
a b c cumsum index10
0 47 41 4 1 0
1 49 43 4 1 10
2 55 51 5 2 20
3 54 52 5 2 30
4 53 53 5 2 40
5 24 41 4 3 50
6 27 42 4 3 60
7 30 43 4 3 70
groupby = df_x.groupby("cumsum")
# initialize dataframe for new row
df_x_append = pd.DataFrame()
for key, item in groupby:
# sub dataframe is too small
if item.shape[0]!=3:
# new entry will be in the middle of existing values
my_index = item.index10[0]+5
# create temporary dataframe
df_x_single = pd.DataFrame({"index10":[my_index], "a": [(item.a[0]+item.a[1])/2], "b": [(item.b[0]+item.b[1])/2],"c":[item.c[0]]})
# append this dataframe
df_x_append = df_x_append.append(df_x_single)
df_x=df_x.append(df_x_append)
# sort by spreaded index
df_x=df_x.sort_values(by='index10', ascending=True, na_position='first')
print(df_x)
a b c cumsum index10
0 47.0 41.0 4 1.0 0
0 48.0 42.0 4 NaN 5
1 49.0 43.0 4 1.0 10
2 55.0 51.0 5 2.0 20
3 54.0 52.0 5 2.0 30
4 53.0 53.0 5 2.0 40
5 24.0 41.0 4 3.0 50
6 27.0 42.0 4 3.0 60
7 30.0 43.0 4 3.0 70
# set spreaded index and remove it
df_x=df_x.set_index('index10')
df_x = df_x.reset_index().drop(["index10"], axis=1)
print(df_x)
a b c cumsum
0 47.0 41.0 4 1.0
1 48.0 42.0 4 NaN
2 49.0 43.0 4 1.0
3 55.0 51.0 5 2.0
4 54.0 52.0 5 2.0
5 53.0 53.0 5 2.0
6 24.0 41.0 4 3.0
7 27.0 42.0 4 3.0
8 30.0 43.0 4 3.0
Upvotes: 1
Reputation: 7994
pandas
's insert method only works for columns. We can use numpy.insert
. Cons: this will create a new dataset. This should serve as an alternative to pd.concat
or pd.append
or pd.merge
.
df_x = pd.DataFrame({"a": [47, 49, 55, 54, 53, 24, 27, 30], "b": [41, 43, 51, 52, 53, 41, 42, 43], "c": [4, 4, 5, 5, 5, 4, 4, 4]})
pd.DataFrame(np.insert(df_x.values, 1, values=[48, 42, 4], axis=0))
0 1 2
0 47 41 4
1 48 42 4
2 49 43 4
3 55 51 5
4 54 52 5
5 53 53 5
6 24 41 4
7 27 42 4
8 30 43 4
In np.insert(df_x.values, 1, values=[48, 42, 4], axis=0)
, 1 tells the function the place/index you want to place the new values.
Upvotes: 1