Reputation: 465
I'm trying build a new column on dataframe as below:
l = [(2, 1), (1,1)]
df = spark.createDataFrame(l)
def calc_dif(x,y):
if (x>y) and (x==1):
return x-y
dfNew = df.withColumn("calc", calc_dif(df["_1"], df["_2"]))
dfNew.show()
But, I get:
Traceback (most recent call last):
File "/tmp/zeppelin_pyspark-2807412651452069487.py", line 346, in <module>
Exception: Traceback (most recent call last):
File "/tmp/zeppelin_pyspark-2807412651452069487.py", line 334, in <module>
File "<stdin>", line 38, in <module>
File "<stdin>", line 36, in calc_dif
File "/usr/hdp/current/spark2-client/python/pyspark/sql/column.py", line 426, in __nonzero__
raise ValueError("Cannot convert column into bool: please use '&' for 'and', '|' for 'or', "
ValueError: Cannot convert column into bool: please use '&' for 'and', '|' for 'or', '~' for 'not' when building DataFrame boolean expressions.
Why It happens? How can I fix It?
Upvotes: 19
Views: 71782
Reputation: 963
For anyone who faces the same error message, check the brackets. Sometimes boolean expression needs more specific expressions like;
DF_New=
df1.withColumn('EventStatus',\
F.when(((F.col("Adjusted_Timestamp")) <\
(F.col("Event_Finish"))) &\
((F.col("Adjusted_Timestamp"))>\
F.col("Event_Start"))),1).otherwise(0))
Upvotes: 5
Reputation: 593
For anyone who has a similar error: I was trying to pass an rdd when I needed a Pandas object and got the same error. Obviously, I could simply solve it by a ".toPandas()"
Upvotes: 4
Reputation: 2718
It is complaining because you give your calc_dif function the whole column objects, not the actual data of the respective rows. You need to use a udf
to wrap your calc_dif
function :
from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf
l = [(2, 1), (1,1)]
df = spark.createDataFrame(l)
def calc_dif(x,y):
# using the udf the calc_dif is called for every row in the dataframe
# x and y are the values of the two columns
if (x>y) and (x==1):
return x-y
udf_calc = udf(calc_dif, IntegerType())
dfNew = df.withColumn("calc", udf_calc("_1", "_2"))
dfNew.show()
# since x < y calc_dif returns None
+---+---+----+
| _1| _2|calc|
+---+---+----+
| 2| 1|null|
| 1| 1|null|
+---+---+----+
Upvotes: 7
Reputation: 35249
Either use udf
:
from pyspark.sql.functions import udf
@udf("integer")
def calc_dif(x,y):
if (x>y) and (x==1):
return x-y
or case when (recommended)
from pyspark.sql.functions import when
def calc_dif(x,y):
when(( x > y) & (x == 1), x - y)
The first one computes on Python objects, the second one on Spark Columns
Upvotes: 15