Reputation: 2067
I have a data frame with a column of date-time strings:
library(tidyverse)
library(lubridate)
testdf = data_frame(
mytz = c('Australia/Sydney', 'Australia/Adelaide', 'Australia/Perth'),
mydt = c('2018-01-17T09:15:00', '2018-01-17T09:16:00', '2018-01-17T09:18:00'))
testdf
# A tibble: 3 x 2
# mytz mydt
# <chr> <chr>
# 1 Australia/Sydney 2018-01-17T09:15:00
# 2 Australia/Adelaide 2018-01-17T09:16:00
# 3 Australia/Perth 2018-01-17T09:18:00
I want to convert these date-time strings to POSIX date-time objects with their respective timezones:
testdf %>% mutate(mydt_new = ymd_hms(mydt, tz = mytz))
Error in mutate_impl(.data, dots) : Evaluation error:
tz
argument must be a single character string. In addition: Warning message: In if (tz != "UTC") { : the condition has length > 1 and only the first element will be used
I get the same result if I use ymd_hms
without a timezone and pipe it into force_tz
. Is it fair to conclude that lubridate doesn't support any sort of vectorisation when it comes to timezone operations?
Upvotes: 6
Views: 1046
Reputation: 887118
Another option is map2
. It may be better to store different tz
output in a list
as this may get coerced to a single tz
library(tidyverse)
out <- testdf %>%
mutate(mydt_new = map2(mydt, mytz, ~ymd_hms(.x, tz = .y)))
If required, it can be unnest
ed
out %>%
unnest
The values in the list
are
out %>%
pull(mydt_new)
#[[1]]
#[1] "2018-01-17 09:15:00 AEDT"
#[[2]]
#[1] "2018-01-17 09:16:00 ACDT"
#[[3]]
#[1] "2018-01-17 09:18:00 AWST"
Upvotes: 5
Reputation: 23574
tz argument must be a single character string.
indicates that there are more than one time zones thrown into ymd_hms()
. In order to make sure that there is only one time zone being thrown into the function, I used rowwise()
. Note that I am not in Australian time zone. So I am not sure if the outcome I have is identical to yours.
testdf <- data_frame(mytz = c('Australia/Sydney', 'Australia/Adelaide', 'Australia/Perth'),
mydt = c('2018-01-17 09:15:00', '2018-01-17 09:16:00', '2018-01-17 09:18:00'))
testdf %>%
rowwise %>%
mutate(mydt_new = ymd_hms(mydt, tz = mytz))
mytz mydt mydt_new
<chr> <chr> <dttm>
1 Australia/Sydney 2018-01-17 09:15:00 2018-01-17 06:15:00
2 Australia/Adelaide 2018-01-17 09:16:00 2018-01-17 06:46:00
3 Australia/Perth 2018-01-17 09:18:00 2018-01-17 09:18:00
Upvotes: 3