Reputation: 1109
I have n arrays of string columns. I would like concatenate this n columns in one, using a loop.
I have this function to concat columns:
def concat(type):
def concat_(*args):
return list(chain(*args))
return udf(concat_, ArrayType(type))
concat_string_arrays = concat(StringType())
And in the following example, I have 4 columns that I will concatenate like this:
df_aux = df.select('ID_col',concat_string_arrays(col("patron_txt_1"),col("patron_txt_2"),col('patron_txt_3'),col('patron_txt_0')).alias('patron_txt')
But, if I have 200 columns, how can I use dynamically this function with a loop?
Upvotes: 1
Views: 3596
Reputation: 21766
You can use the *
operator to pass a list of columns to your concat UDF:
from itertools import chain
from pyspark.sql.functions import col, udf
from pyspark.sql.types import *
df = sqlContext.createDataFrame([("1", "2","3","4"),
("5","6","7","8")],
('ID_col', 'patron_txt_0','patron_txt_1','patron_txt_2'))
def concat(type):
def concat_(*args):
return list(chain(*args))
return udf(concat_, ArrayType(type))
concat_string_arrays = concat(StringType())
#Select the columns you want to concatenate
cols = [c for c in df.columns if c.startswith("patron_txt")]
#Use the * operator to pass multiple columns to concat_string_arrays
df.select('ID_col',concat_string_arrays(*cols).alias('patron_txt')).show()
This results in the following output:
+------+----------+
|ID_col|patron_txt|
+------+----------+
| 1| [2, 3, 4]|
| 5| [6, 7, 8]|
+------+----------+
Upvotes: 1