Reputation: 702
Suppose you have a set of transcribed customer service calls between customers and human agents, where on average each call's length is 7 minutes. Customers will mostly call because of issues they have with the product. Let's assume that a human can assign one label per axis per call:
Based on the manually labeled texts you want to train a text classifier that shall predict a label for each call for each of the three axes. But the labeling of recordings takes time and costs money. On the other hand you need a certain amount of training data to get good prediction results.
Given the above assumptions, how many manually labeled training texts would you start with? And how do you know that you need more labeled training texts?
Maybe you've worked on a similar task before and can give some advice.
UPDATE (2018-01-19): There's no right or wrong answer to my question. Ok, ideally, somebody worked on exactly the same task, but that's very unlikely. I'll leave the question open for one more week and then accept the best answer.
Upvotes: 0
Views: 787
Reputation: 6639
This would be tricky to answer but I will try my best based on my experience.
In the past, I have performed text classification on 3 datasets; the number in the bracket indicates how big my dataset was: restaurant reviews (50K sentences), reddit comments (250k sentences) and developer comments from issue tracking systems (10k sentences). Each of them had multiple labels as well.
In each of the three cases, including the one with 10k sentences, I achieved an F1 score of more than 80%. I am stressing on this dataset specifically because I was told by some that the size is less for this dataset.
So, in your case, assuming you have atleast 1000 instances (calls that include conversation between customer and agent) of average 7 minute calls, this should be a decent start. If the results are not satisfying, you have the following options:
1) Use different models (MNB, Random Forest, Decision Tree, and so on in addition to whatever you are using)
2) If point 1 gives more or less similar results, check the ratio of instances of all the classes you have (the 3 axis you are talking about here). If they do not share a good ratio, get more data or try out the different balancing techniques if you cannot get more data.
3) Another way would be to classify them at a sentence level than message or conversation level to generate more data and individual labels for sentences rather than message or the conversation itself.
Upvotes: 1