Reputation: 568
How do I find a position(index) of all entries of search_value?
import pandas as pd
import numpy as np
search_value=8
lst=[5, 8, 2, 7, 8, 8, 2, 4]
df=pd.DataFrame(lst)
df["is_search_value"]=np.where(df[0]==search_value, True, False)
print(df.head(20))
Output:
0 is_search_value
0 5 False
1 8 True
2 2 False
3 7 False
4 8 True
5 8 True
6 2 False
7 4 False
Desirable output:
1 4 5
If search_value is 10 than desirable output:
None
Upvotes: 5
Views: 16999
Reputation: 210812
If you pass to np.where()
only condition - it'll return indices of matched elements:
In [29]: np.where(df[0]==search_value)
Out[29]: (array([1, 4, 5], dtype=int64),)
For custom Pandas indices:
In [39]: df = pd.DataFrame(lst, index=np.arange(8)[::-1])
In [40]: df
Out[40]:
0
7 5
6 8
5 2
4 7
3 8
2 8
1 2
0 4
In [41]: df.index[np.where(df[0]==search_value)]
Out[41]: Int64Index([6, 3, 2], dtype='int64')
Upvotes: 1
Reputation: 1761
with pandas
>>> (pd.Series([5, 8, 2, 7, 8, 8, 2, 4]) == 8).nonzero()
(array([1, 4, 5], dtype=int64),)
Upvotes: -1
Reputation: 109510
You can use enumerate in a conditional list comprehension to get the index locations.
my_list = [5, 8, 2, 7, 8, 8, 2, 4]
search_value = 8
>>> [i for i, n in enumerate(my_list) if n == search_value]
[1, 4, 5]
If the search value is not in the list, then an empty list will be returned (not exactly None, but still a falsey).
Using pandas, you can use boolean indexing to get the matches, then extract the index to a list:
df[df[0] == search_value].index.tolist()
Using an empty list will satisfy the condition for None (they both evaluate to False). If you really need None, then use the suggestion of @cᴏʟᴅsᴘᴇᴇᴅ.
Upvotes: 4