Reputation: 529
I have a dataframe,df2 which has 6 rows and 1591 columns
0.0.0 10.1.21 1.5.12 3.7.8 3.5.8 1.7.8 ...
June 1 1 4 0 0 4
July 0 0 0 0 0 0
August 54 0 9 0 5 0
September 22 0 6 0 0 1
October 0 9 5 1 4 0
I want to plot multiple of 3 columns in each panel in a figure as a stacked bar. that is column: 0.0.0 to 1.5.12 to be plotted in a separate panel and column:3.7.8 to 1.7.8 in another panel. Here is the code:
df= df2
df['key1'] = 0
df.key1.loc[:, ['0.0.0', '10.1.21', '1.5.12']].values = 1
df.key1.loc[:,['3.7.8', '3.5.8', '1.7.8']].values = 2
df.key1.loc[:,['4.4.3', '2.2.0', '2.8.0']].values = 3
# Plot in Three Panels
distinct_keys = df['key1'].unique()
fig, axes = pyplot.subplots(len(distinct_keys), 1, sharex=True, figsize= (3,5))
#{df_subset groups the rows with the same key in other to plot them in the same panel}
for i, key in enumerate(distinct_keys):
df_subset =df[df['key1']==key]
# plot
axes[i] = df_subset.plot(kind='bar', stacked=True)
pyplot.legend(bbox_to_anchor=(1.04,1), loc="upper right")
pyplot.subplots_adjust(right=0.7)
pyplot.tight_layout(rect=[0,0,0.75,1])
pyplot.savefig("output.png", bbox_inches="tight")
but i get :IndexingError: Too many indexers
Upvotes: 1
Views: 1976
Reputation: 402363
Initialise the subplots -
fig, axs = plt.subplots(len(df.columns) // 3, 1, sharex=True)
Next, perform a groupby
along the first axis, but don't plot yet.
gs = df.groupby(np.arange(len(df.columns)) // 3, axis=1)
Finally, zip
up the axes and the groupby
output, and plot each one at a time.
for (_, g), ax in zip(gs, axs):
g.plot.bar(stacked=True, ax=ax)
plt.show()
Upvotes: 3