Reputation: 745
I used the accepted answer in this question to obtain local maxima in a numpy array of 2 or more dimensions so I could assign labels to them. Now I would like to also assign these labels to neighboring cells in the array, depending on gradient – i.e. a cell gets the same label as the neighboring cell with the highest value. This way I can iteratively assign labels to my entire array.
Assume I have an array A
like
>>> A = np.array([[ 1. , 2. , 2.2, 3.5],
[ 2.1, 2.4, 3. , 3.3],
[ 1. , 3. , 3.2, 3. ],
[ 2. , 4.1, 4. , 2. ]])
Applying the maximum_filter
I get
>>> scipy.ndimage.filters.maximum_filter(A, size=3)
array([[ 2.4, 3. , 3.5, 3.5],
[ 3. , 3.2, 3.5, 3.5],
[ 4.1, 4.1, 4.1, 4. ],
[ 4.1, 4.1, 4.1, 4. ]])
Now, for every cell in this array I would like to have the coordinates of the maximum found by the filter, i.e.
array([[[1,1],[1,2],[0,3],[0,3]],
[[2,1],[2,2],[0,3],[0,3]],
[[3,1],[3,1],[3,1],[3,2]],
[[3,1],[3,1],[3,1],[3,2]]])
I would then use these coordinates to assign my labels iteratively.
I can do it for two dimensions using loops, ignoring borders
highest_neighbor_coordinates = np.array([[(argmax2D(A[i-1:i+2, j-1:j+2])+np.array([i-1, j-1])) for j in range(1, A.shape[1]-1)] for i in range(1, A.shape[0]-1)])
but after seeing the many filter functions in scipy.ndimage
I was hoping there would be a more elegant and extensible (to >=3 dimensions) solution.
Upvotes: 4
Views: 428
Reputation: 221514
We can use pad with reflected elements to simulate the max-filter operation and get sliding windows on it with scikit-image
's view_as_windows
, compute the flattened argmax indices, offset those with ranged values to translate onto global scale -
from skimage.util import view_as_windows as viewW
def window_argmax_global2D(A, size):
hsize = (size-1)//2 # expects size as odd number
m,n = A.shape
A1 = np.pad(A, (hsize,hsize), mode='reflect')
idx = viewW(A1, (size,size)).reshape(-1,size**2).argmax(-1).reshape(m,n)
r,c = np.unravel_index(idx, (size,size))
rows = np.abs(r + np.arange(-hsize,m-hsize)[:,None])
cols = np.abs(c + np.arange(-hsize,n-hsize))
return rows, cols
Sample run -
In [201]: A
Out[201]:
array([[1. , 2. , 2.2, 3.5],
[2.1, 2.4, 3. , 3.3],
[1. , 3. , 3.2, 3. ],
[2. , 4.1, 4. , 2. ]])
In [202]: rows, cols = window_argmax_global2D(A, size=3)
In [203]: rows
Out[203]:
array([[1, 1, 0, 0],
[2, 2, 0, 0],
[3, 3, 3, 3],
[3, 3, 3, 3]])
In [204]: cols
Out[204]:
array([[1, 2, 3, 3],
[1, 2, 3, 3],
[1, 1, 1, 2],
[1, 1, 1, 2]])
Extending to n-dim
We would use np.ogrid
for this extension part :
def window_argmax_global(A, size):
hsize = (size-1)//2 # expects size as odd number
shp = A.shape
N = A.ndim
A1 = np.pad(A, (hsize,hsize), mode='reflect')
idx = viewW(A1, ([size]*N)).reshape(-1,size**N).argmax(-1).reshape(shp)
offsets = np.ogrid[tuple(map(slice, shp))]
out = np.unravel_index(idx, ([size]*N))
return [np.abs(i+j-hsize) for i,j in zip(out,offsets)]
Upvotes: 1