Reputation: 5278
I have a tf.data.Iterator
created with make_one_shot_iterator()
and want to use it to train my (existing) model.
Currently my training looks like this
input_node = tf.placeholder(tf.float32, shape=(None, height, width, channels))
net = models.ResNet50UpProj({'data': input_node}, batch_size, keep_prob=True,is_training=True)
labels = tf.placeholder(tf.float32, shape=(None, width, height, 1))
huberloss = tf.losses.huber_loss(predictions=net.get_output(),labels=labels)
And then calling
sess.run(train_op, feed_dict={labels:output_img, input_node:input_img})
After training I can get a prediction like that:
pred = sess.run(net.get_output(), feed_dict={input_node: img})
Now with an iterator I tried something like this
next_element = iterator.get_next()
Passing the input data like this:
net = models.ResNet50UpProj({'data': next_element[0]}, batch_size, keep_prob=True,is_training=True)
Defining the loss function like this:
huberloss = tf.losses.huber_loss(predictions=net.get_output(),labels=next_element[1])
And executing the training as simple as while iterating over the iterator automatically with every call of this:
sess.run(train_op)
My problem is: After training I can't make any prediction. Or rather I don't know the proper way of using the iterator in my case.
Upvotes: 3
Views: 1206
Reputation: 7844
Solution 1: create a separate sub-graph just for inference, especially when you have layers like batch normalization and dropout (is_training=False
).
# The following code assumes that you create variables with `tf.get_variable`.
# If you create variables manually, you have to reuse them manually.
with tf.variable_scope('somename'):
net = models.ResNet50UpProj({'data': next_element[0]}, batch_size, keep_prob=True, is_training=True)
with tf.variable_scope('somename', reuse=True):
net_for_eval = models.ResNet50UpProj({'data': some_placeholder_or_inference_data_iterator}, batch_size, keep_prob=True, is_training=False)
Solution 2: use feed_dict
. You can replace almost any tf.Tensor
, not just tf.placeholder
with a feed dict.
sess.run(huber_loss, {next_element[0]: inference_image, next_element[1]: inference_labels})
Upvotes: 4