Reputation: 1317
If I have got something like this:
D = {'a': 97, 'c': 0 , 'b':0,'e': 94, 'r': 97 , 'g':0}
If I want for example to count the number of occurrences for the "0" as a value without having to iterate the whole list, is that even possible and how?
Upvotes: 40
Views: 110617
Reputation: 12515
Alternatively, using collections.Counter
:
from collections import Counter
D = {'a': 97, 'c': 0 , 'b':0,'e': 94, 'r': 97 , 'g':0}
Counter(D.values())[0]
# 3
Upvotes: 29
Reputation: 99
for i in hashmap:
print(Counter(hashmap.values())[hashmap[i]])
# In this way we can traverse & check the count with the help of Counter
Upvotes: 1
Reputation: 107347
As mentioned in THIS ANSWER using operator.countOf()
is the way to go but you can also use a generator within sum()
function as following:
sum(value == 0 for value in D.values())
# Or the following which is more optimized
sum(1 for v in D.values() if v == 0)
Or as a slightly more optimized and functional approach you can use map
function by passing the __eq__
method of the integer as the constructor function.
sum(map((0).__eq__, D.values()))
Benchmark:
In [15]: D = dict(zip(range(1000), range(1000)))
In [16]: %timeit sum(map((0).__eq__, D.values()))
49.6 µs ± 770 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
In [17]: %timeit sum(v==0 for v in D.values())
60.9 µs ± 669 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
In [18]: %timeit sum(1 for v in D.values() if v == 0)
30.2 µs ± 515 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
In [19]: %timeit countOf(D.values(), 0)
16.8 µs ± 74.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Note that although using map
function in this case may be more optimized, but in order to have a more comprehensive and general idea about the two approaches you should run the benchmark for relatively large datasets as well. Then, you can use the most proper approach based on the structure and amount of data you have.
Upvotes: 56
Reputation: 27640
That's a job for operator.countOf
.
countOf(D.values(), 0)
Benchmark with your example dictionary:
1537 ns 1540 ns 1542 ns Counter(D.values())[0]
791 ns 800 ns 802 ns sum(value == 0 for value in D.values())
694 ns 697 ns 717 ns sum(map((0).__eq__, D.values()))
680 ns 682 ns 689 ns sum(1 for value in D.values() if value == 0)
599 ns 599 ns 600 ns sum([1 for i in D.values() if i == 0])
368 ns 369 ns 375 ns list(D.values()).count(0)
229 ns 231 ns 231 ns countOf(D.values(), 0)
Code (Try it online!):
from timeit import repeat
setup = '''
from collections import Counter
from operator import countOf
D = {'a': 97, 'c': 0 , 'b':0,'e': 94, 'r': 97 , 'g':0}
'''
E = [
'Counter(D.values())[0]',
'sum(value == 0 for value in D.values())',
'sum(map((0).__eq__, D.values()))',
'sum(1 for value in D.values() if value == 0)',
'sum([1 for i in D.values() if i == 0])',
'list(D.values()).count(0)',
'countOf(D.values(), 0)',
]
for _ in range(3):
for e in E:
number = 10 ** 5
ts = sorted(repeat(e, setup, number=number))[:3]
print(*('%4d ns ' % (t / number * 1e9) for t in ts), e)
print()
Upvotes: 6
Reputation: 25154
You can count it converting it to a list as follows:
D = {'a': 97, 'c': 0 , 'b':0,'e': 94, 'r': 97 , 'g':0}
print(list(D.values()).count(0))
>>3
Or iterating over the values:
print(sum([1 for i in D.values() if i == 0]))
>>3
Upvotes: 13