user2100362
user2100362

Reputation: 21

Richardson-Lucy deconvolution for one dimensional array

I am looking for an implementation of Richardson-Lucy deconvolution algorithm that works for one dimensional arrays, like spectroscopic data. I tried scikit-image, but apparently it only works for images.

Upvotes: 1

Views: 2179

Answers (1)

soupault
soupault

Reputation: 6510

Have you tried using restoration.richardson_lucy on a one-row/one-column 2D-array? Does it work as expected?

Here is an example based on http://scikit-image.org/docs/dev/auto_examples/filters/plot_deconvolution.html (see input cells 3 and 4):

In [1]: import numpy as np
   ...: import matplotlib.pyplot as plt
   ...: 
   ...: from scipy.signal import convolve2d as conv2
   ...: 
   ...: from skimage import color, data, restoration
   ...: 
   ...: astro = color.rgb2gray(data.astronaut())
   ...: 

In [2]: 
   ...: psf = np.ones((5, 5)) / 25
   ...: astro = conv2(astro, psf, 'same')
   ...: # Add Noise to Image
   ...: astro_noisy = astro.copy()
   ...: astro_noisy += (np.random.poisson(lam=25, size=astro.shape) - 10) / 255.
   ...: 
   ...: 

In [3]: astro_1d = astro[:1, :]
In [4]: psf_1d = psf[:1, :] * 5

In [5]: deconvolved_RL = restoration.richardson_lucy(astro_1d, psf_1d, iteration
   ...: s=30)
   ...: 
   ...: 

In [8]: deconvolved_RL[0][:10]
Out[8]: 
array([  3.68349589e-06,   4.64232976e-03,   8.96492325e-01,
         2.92227252e-01,   2.27669473e-01,   1.63909318e-01,
         2.62231088e-01,   5.63304220e-01,   4.29589937e-01,
         3.21857292e-01])

In [9]: astro_1d[0][:10]
Out[9]: 
array([ 0.20156543,  0.25178911,  0.31006612,  0.29581576,  0.30208733,
        0.32490093,  0.35101666,  0.36213184,  0.35174074,  0.318339  ])

If you find casting to 2D really inconvenient, feel free to raise an issue on GitHub.

Upvotes: 1

Related Questions