Reputation: 747
I have a system of 5 ODEs with nonlinear terms involved. I am trying to vary 3 parameters over some ranges to see what parameters would produce the necessary behaviour that I am looking for.
The issue is I have written the code with 3 for
loops and it takes a very long time to get the output.
I am also storing the parameter values within the loops when it meets a parameter set that satisfies an ODE event.
This is how I have implemented it in matlab.
function [m,cVal,x,y]=parameters()
b=5000;
q=0;
r=10^4;
s=0;
n=10^-8;
time=3000;
m=[];
cVal=[];
x=[];
y=[];
val1=0.1:0.01:5;
val2=0.1:0.2:8;
val3=10^-13:10^-14:10^-11;
for i=1:length(val1)
for j=1:length(val2)
for k=1:length(val3)
options = odeset('AbsTol',1e-15,'RelTol',1e-13,'Events',@eventfunction);
[t,y,te,ye]=ode45(@(t,y)systemFunc(t,y,[val1(i),val2(j),val3(k)]),0:time,[b,q,s,r,n],options);
if length(te)==1
m=[m;val1(i)];
cVal=[cVal;val2(j)];
x=[x;val3(k)];
y=[y;ye(1)];
end
end
end
end
Is there any other way that I can use to speed up this process?
I have written the system of ODEs simply with the a format like
function s=systemFunc(t,y,p)
s= zeros(2,1);
s(1)=f*y(1)*(1-(y(1)/k))-p(1)*y(2)*y(1)/(p(2)*y(2)+y(1));
s(2)=p(3)*y(1)-d*y(2);
end
f,d,k are constant parameters.
The equations are more complicated than what's here as its a system of 5 ODEs with lots of non linear terms interacting with each other.
Upvotes: 0
Views: 146
Reputation: 3052
In continuation of the other suggestions, I have 2 more suggestions for you:
You might want to try with a different solver, ODE45 is for non-stiff problems, but from the looks of it, it might seem like your problem could be stiff (parameters have a different order of magnitude). Try for instance with the ode23s
method.
Secondly, without knowing which event you are looking for, maybe it is possible for you to use a logarithmic search rather than a linear one. e.g. the Bisection method. This will severely cut down on the number of times you have to solve the equation.
Upvotes: 0
Reputation: 7349
Tommaso is right. Preallocating will save some time.
But I would guess that there is fundamentally not a lot you can do since you are running ode45
in a loop. ode45
itself may be the bottleneck.
I would suggest you profile your code to see where the bottleneck is:
profile on
parameters(... )
profile viewer
I would guess that ode45
is the problem. Probably you will find that you should actually focus your time on optimizing the systemFunc
code for performance. But you won't know that until you run the profiler.
EDIT
Based on the profiler output and additional code, I see some things that will help
It seems like the vectorization of your values is hurting you. Instead of
@(t,y)systemFunc(t,y,[val1(i),val2(j),val3(k)])
try
@(t,y)systemFunc(t,y,val1(i),val2(j),val3(k))
where your system function is defined as
function s=systemFunc(t,y,p1,p2,p3)
s= zeros(2,1);
s(1)=f*y(1)*(1-(y(1)/k))-p1*y(2)*y(1)/(p2*y(2)+y(1));
s(2)=p3*y(1)-d*y(2);
end
Next, note that you don't have to preallocate space in the systemFunc, just combine them in the output:
function s=systemFunc(t,y,p1,p2,p3)
s = [ f*y(1)*(1-(y(1)/k))-p1*y(2)*y(1)/(p2*y(2)+y(1)),
p3*y(1)-d*y(2) ];
end
Finally, note that ode45 is internally taking about 1/3 of your runtime. There is not much you will be able to do about that. If you can live with it, I would suggest increasing your 'AbsTol' and 'RelTol' to more reasonable numbers. Those values are really small, and are making ode45 run for a really long time. If you can live with it, try increasing them to something like 1e-6 or 1e-8 and see how much the performance increases. Alternatively, depending on how smooth your function is, you might be able to do better with a different integrator (like ode23). But your mileage will vary based on how smooth your problem is.
Upvotes: 3
Reputation: 23675
I have two suggestions for you.
Final code:
function [m,cVal,x,y] = parameters()
b = 5000;
q = 0;
r = 10^4;
s = 0;
n = 10^-8;
time = 3000;
options = odeset('AbsTol',1e-15,'RelTol',1e-13,'Events',@eventfunction);
val1 = 0.1:0.01:5;
val1_len = numel(val1);
val2 = 0.1:0.2:8;
val2_len = numel(val2);
val3 = 10^-13:10^-14:10^-11;
val3_len = numel(val3);
total_len = val1_len * val2_len * val3_len;
m = NaN(total_len,1);
cVal = NaN(total_len,1);
x = NaN(total_len,1);
y = NaN(total_len,1);
res_offset = 1;
for i = 1:val1_len
for j = 1:val2_len
for k = 1:val3_len
[t,y,te,ye] = ode45(@(t,y)systemFunc(t,y,[val1(i),val2(j),val3(k)]),0:time,[b,q,s,r,n],options);
if (length(te) == 1)
m(res_offset) = val1(i);
cVal(res_offset) = val2(j);
x(res_offset) = val3(k);
y(res_offset) = ye(1);
end
res_offset = res_offset + 1;
end
end
end
end
If you only want to preserve result values that have been correctly computed, you can remove the rows containing NaNs
at the bottom of your function. Indexing on one of the vectors will be enough to clear everything:
rows_ok = ~isnan(y);
m = m(rows_ok);
cVal = cVal(rows_ok);
x = x(rows_ok);
y = y(rows_ok);
Upvotes: 3