Reputation: 2653
I changed an RDD to DataFrame and compared the results with another DataFrame which I imported using read.csv but the floating point precision is not the same from the two approaches. I appreciate your help.
The data I am using is from here.
from pyspark.sql import Row
from pyspark.sql.types import *
orders = sc.textFile("retail_db/orders")
order_items = sc.textFile('retail_db/order_items')
orders_comp = orders.filter(lambda line: ((line.split(',')[-1] == 'CLOSED') or (line.split(',')[-1] == 'COMPLETE')))
orders_compMap = orders_comp.map(lambda line: (int(line.split(',')[0]), line.split(',')[1]))
order_itemsMap = order_items.map(lambda line: (int(line.split(',')[1]),
(int(line.split(',')[2]), float(line.split(',')[4])) ))
joined = orders_compMap.join(order_itemsMap)
joined2 = joined.map(lambda line: ((line[1][0], line[1][1][0]), line[1][1][1]))
joined3 = joined2.reduceByKey(lambda a, b : a +b).sortByKey()
df1 = joined3.map(lambda x:Row(date = x[0][0], product_id = x[0][1], total = x[1])).toDF().select(['date','product_id', 'total'])
schema = StructType([StructField('order_id', IntegerType(), True),
StructField('date', StringType(), True),
StructField('customer_id', StringType(), True),
StructField('status', StringType(), True)])
orders2 = spark.read.csv("retail_db/orders",schema = schema)
schema = StructType([StructField('item_id', IntegerType(), True),
StructField('order_id', IntegerType(), True),
StructField('product_id', IntegerType(), True),
StructField('quantity', StringType(), True),
StructField('sub_total', FloatType(), True),
StructField('product_price', FloatType(), True)])
orders_items2 = spark.read.csv("retail_db/order_items", schema = schema)
orders2.registerTempTable("orders2t")
orders_items2.registerTempTable("orders_items2t")
df2 = spark.sql('select o.date, oi.product_id, sum(oi.sub_total) \
as total from orders2t as o inner join orders_items2t as oi on
o.order_id = oi.order_id \
where o.status in ("CLOSED", "COMPLETE") group by o.date,
oi.product_id order by o.date, oi.product_id')
df1.registerTempTable("df1t")
df2.registerTempTable("df2t")
spark.sql("select d1.total - d2.total as difference from df1t as d1 inner
join df2t as d2 on d1.date = d2.date \
and d1.product_id =d2.product_id ").show(truncate = False)
Upvotes: 5
Views: 7185
Reputation: 35249
Ignoring loss of precision in conversions there are not the same.
Python
According to Python's Floating Point Arithmetic: Issues and Limitations standard implementations use 64 bit representation:
Almost all machines today (November 2000) use IEEE-754 floating point arithmetic, and almost all platforms map Python floats to IEEE-754 “double precision”. 754 doubles contain 53 bits of precision,
Spark SQL
In Spark SQL FloatType
uses 32 bit representation:
FloatType
: Represents 4-byte single-precision floating point numbers.
Using DoubleType
might be closer:
DoubleType
: Represents 8-byte double-precision floating point numbers.
but if predictable behavior is important you should use DecimalTypes
with well defined precision.
Upvotes: 2