Reputation:
I refer to this link for experiments.
This is the original picture:
My test code:
import cv2
import numpy as np
img = cv2.imread('E:/image/sudoku.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
lines = cv2.HoughLines(edges,1,np.pi/180,200)
for rho,theta in lines[0]:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(img,(x1,y1),(x2,y2),(0,0,255),2)
cv2.imwrite('E:/image/myhoughlines.jpg',img)
cv2.imshow('1',img)
cv2.waitKey(0)
The result of my code running:
But I want this effect:
Where is wrong?
Upvotes: 1
Views: 288
Reputation:
I know where is wrong! The code of the official website is less a loop. The code is changed to this:
import cv2
import numpy as np
img = cv2.imread('E:/image/sudoku.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
lines = cv2.HoughLines(edges,1,np.pi/180,200)
for i in range(len(lines)):
for rho,theta in lines[i]:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(img,(x1,y1),(x2,y2),(0,0,255),2)
cv2.imwrite('E:/image/myhoughlines.jpg',img)
cv2.imshow('1',img)
cv2.waitKey(0)
Upvotes: 1