Reputation: 1125
I'm okay with a regular distribution, say simulating a fair die.
But what if I wanted to simulate the following:
X_n = 2 (with probability 0.6) or -1 (with probability 0.4) when n is odd.
X_n = -2 (with probability 0.6) or 1 (with probability 0.4) when n is even.
Any advice?
Upvotes: 1
Views: 938
Reputation: 5017
Try this:
sample(c(2,-1), size=100, replace=TRUE, prob=c(0.6,0.4))
sample(c(-2,1), size=100, replace=TRUE, prob=c(0.6,0.4))> n<-20
An example on the first 20 numbers:
n<-20
odd_n<-seq(1,n,by=2)
even_n<-seq(2,n,by=2)
odd<-sample(c(2,-1), size=n/2, replace=TRUE, prob=c(0.6,0.4))
even<-sample(c(-2,1), size=n/2, replace=TRUE, prob=c(0.6,0.4))
db<-data.frame(value=c(odd,even),number=c(odd_n,even_n))
row.names(db) <- NULL
db
value number
1 -1 1
2 -2 2
3 2 3
4 -2 4
5 2 5
6 -2 6
7 -1 7
8 1 8
9 2 9
10 -2 10
11 2 11
12 1 12
13 2 13
14 -2 14
15 -1 15
16 -2 16
17 -1 17
18 1 18
19 2 19
20 1 20
Upvotes: 5
Reputation: 25223
You can use runif
to generate samples and threshold it at 0.4 to decide whether it should be -1/1 or 2/-2 depending on whether n is odd or even.
sim <- function(n) {
x <- runif(n)
if (n %% 2 == 0) {
ret <- ifelse(x < 0.4, 1, -2)
} else {
ret <- ifelse(x < 0.4, -1, 2)
}
return(ret)
}
to verify distribution
hist(sim(10000))
hist(sim(10001))
Upvotes: 2