Reputation: 171
Now, my dataset looks like this:
tconst Actor1 Actor2 Actor3 Actor4 Actor5 Actor6 Actor7 Actor8 Actor9 Actor10
0 tt0000001 NaN GreaterEuropean, WestEuropean, French GreaterEuropean, British NaN NaN NaN NaN NaN NaN NaN
1 tt0000002 NaN GreaterEuropean, WestEuropean, French NaN NaN NaN NaN NaN NaN NaN NaN
2 tt0000003 NaN GreaterEuropean, WestEuropean, French GreaterEuropean, WestEuropean, French GreaterEuropean, WestEuropean, French NaN NaN NaN NaN NaN NaN
3 tt0000004 NaN GreaterEuropean, WestEuropean, French NaN NaN NaN NaN NaN NaN NaN NaN
4 tt0000005 NaN GreaterEuropean, British GreaterEuropean, British NaN NaN NaN NaN NaN NaN NaN
I used replace and map function to get here.
I want to create a dataframe from the above data frames such as I can get resulting dataframe as below.
tconst GreaterEuropean WestEuropean French GreaterEuropean British Arab British ............
tt0000001 2 1 0 4 1 0 2 .....
tt0000002 0 2 4 0 1 3 0 .....
GreaterEuropean British WestEuropean Italian French ... represents number of ehnicities of different actors in a particlular movie specified by tconst.
That would be like a count matrix, such as for a movie tt00001 there are 5 Arabs, 2 British, 1 WestEuropean and so on such that in a movie, how many actors are there who belong to these ethnicities. Link to data - https://drive.google.com/open?id=1oNfbTpmLA0imPieRxGfU_cBYVfWN3tZq
Upvotes: 2
Views: 2934
Reputation: 2151
import numpy as np
import pandas as pd
df_melted = pd.melt(df, id_vars = 'tconst',
value_vars = df.columns[2:].tolist(),
var_name = 'actor',
value_name = 'ethnicities').dropna()
print(df_melted.ethnicities.str.get_dummies(sep = ',').sum())
Output:
British 169
EastAsian 9
EastEuropean 17
French 73
Germanic 9
GreaterEastAsian 13
Hispanic 9
IndianSubContinent 2
Italian 7
Japanese 4
Jewish 25
Nordic 7
WestEuropean 105
Asian 15
GreaterEuropean 316
dtype: int64
This is close to what you wanted, but not exact. To get what you wanted, without typing out the lists of columns or values, is more complicated.
From: https://stackoverflow.com/a/48120674/6672746
def change_column_order(df, col_name, index):
cols = df.columns.tolist()
cols.remove(col_name)
cols.insert(index, col_name)
return df[cols]
def split_df(dataframe, col_name, sep):
orig_col_index = dataframe.columns.tolist().index(col_name)
orig_index_name = dataframe.index.name
orig_columns = dataframe.columns
dataframe = dataframe.reset_index() # we need a natural 0-based index for proper merge
index_col_name = (set(dataframe.columns) - set(orig_columns)).pop()
df_split = pd.DataFrame(
pd.DataFrame(dataframe[col_name].str.split(sep).tolist())
.stack().reset_index(level=1, drop=1), columns=[col_name])
df = dataframe.drop(col_name, axis=1)
df = pd.merge(df, df_split, left_index=True, right_index=True, how='inner')
df = df.set_index(index_col_name)
df.index.name = orig_index_name
# merge adds the column to the last place, so we need to move it back
return change_column_order(df, col_name, orig_col_index)
Using those excellent functions:
df_final = split_df(df_melted, 'ethnicities', ',')
df_final.set_index(['tconst', 'actor'], inplace = True)
df_final.pivot_table(index = ['tconst'],
columns = 'ethnicities',
aggfunc = pd.Series.count).fillna(0).astype('int')
Output:
ethnicities British EastAsian EastEuropean French Germanic GreaterEastAsian Hispanic IndianSubContinent Italian Japanese Jewish Nordic WestEuropean Asian GreaterEuropean
tconst
tt0000001 1 0 0 1 0 0 0 0 0 0 0 0 1 0 2
tt0000002 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
tt0000003 0 0 0 3 0 0 0 0 0 0 0 0 3 0 3
tt0000004 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
tt0000005 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
Upvotes: 3
Reputation: 171
Pandas have it all.
title_principals["all"] = title_principals["Actor1"].astype(str)+','+title_principals["Actor2"].astype(str)+','+title_principals["Actor3"].astype(str)+','+title_principals["Actor4"].astype(str)+','+title_principals["Actor5"].astype(str)+','+title_principals["Actor6"].astype(str)+','+title_principals["Actor7"].astype(str)+','+title_principals["Actor8"].astype(str)+','+title_principals["Actor9"].astype(str)+','+title_principals["Actor10"].astype(str)
and then, from the string, make the count and drop the other variables.
title_principals["GreaterEuropean"] = title_principals["all"].str.contains(r'GreaterEuropean').sum()
Upvotes: 0