Maxime
Maxime

Reputation: 634

Reformatting an Excel file with Pandas

I would like to reformat an Excel file using Pandas.

The Excel file contains a list of ID, for which several Operation are done at different date and on different machine. These data are logged operation by operation and I want to reformat them ID by ID.

I did that code (simplified) that works great but is really not efficient. On my real 15 columns x 20 000 lines Excel file of ~16Mb, it takes ~2/3h to run...

# -*- coding: utf-8 -*-

import pandas as pd
from collections import OrderedDict

data = pd.read_excel('Exemple.xlsx')

IDlist = data.ID.unique().tolist()
for ID in IDlist:

    tempData = OrderedDict()
    tempData['ID'] = ID
    for OP in data[data['ID'] == ID]['Operation'].tolist():

        tempData[str(OP)+'_Date'] = data[data['ID'] == ID][data['Operation'] == OP]['Date'].iloc[0].date()
        tempData[str(OP)+'_Machine'] = data[data['ID'] == ID][data['Operation'] == OP]['Machine'].iloc[0]

    if 'outputData' not in locals():
        outputData = pd.DataFrame(tempData, index=[0])
    else:
        outputData = outputData.append(tempData, ignore_index=True)

writer = pd.ExcelWriter('outputExemple.xlsx')
outputData.to_excel(writer,'sheet',index=False)
writer.save()

Exemple.xlsx is like this (as a csv since it will be easier for you to import) :

ID;Operation;Date;Machine
ID1;10;05/01/2018;Machine1
ID1;20;06/01/2018;Machine2
ID1;30;10/01/2018;Machine3
ID1;40;11/01/2018;Machine4
ID1;50;12/01/2018;Machine5
ID2;10;10/01/2018;Machine1
ID2;20;14/01/2018;Machine2
ID2;30;17/01/2018;Machine3
ID2;50;20/01/2018;Machine5
ID3;10;15/01/2018;Machine1
ID3;30;16/01/2018;Machine3
ID3;50;17/01/2018;Machine5

outputExemple.xlsx - ID by ID (still as a csv...)

ID;10_Date;10_Machine;20_Date;20_Machine;30_Date;30_Machine;40_Date;40_Machine;50_Date;50_Machine
ID1;2018-01-05;Machine1;2018-01-06;Machine2;2018-01-10;Machine3;2018-01-11;Machine4;2018-01-12;Machine5
ID2;2018-01-10;Machine1;2018-01-14;Machine2;2018-01-17;Machine3;;;2018-01-20;Machine5
ID3;2018-01-15;Machine1;;;2018-01-16;Machine3;;;2018-01-17;Machine5

To try and make it faster, I though about having a double index since the combination of both 'ID' & 'Operation' is unique. But I couldn't managed it, and I don't know if it will actually make it faster...

data = data.set_index(['ID', 'Operation'])

Any thought?

Upvotes: 1

Views: 73

Answers (1)

Parfait
Parfait

Reputation: 107567

Consider pivot_table with some wrangling of column names without any looping.

Data

from io import StringIO
import pandas as pd

txt = '''ID;Operation;Date;Machine
ID1;10;05/01/2018;Machine1
ID1;20;06/01/2018;Machine2
ID1;30;10/01/2018;Machine3
ID1;40;11/01/2018;Machine4
ID1;50;12/01/2018;Machine5
ID2;10;10/01/2018;Machine1
ID2;20;14/01/2018;Machine2
ID2;30;17/01/2018;Machine3
ID2;50;20/01/2018;Machine5
ID3;10;15/01/2018;Machine1
ID3;30;16/01/2018;Machine3
ID3;50;17/01/2018;Machine5'''

df = pd.read_table(StringIO(txt), sep=";", parse_dates=[2], dayfirst=True)

Process (extend pivot values and currcols for each of the 15-column groupings)

pvt_df = df.pivot_table(index='ID', columns=['Operation'], 
                        values=['Date', 'Machine'], aggfunc='max')    
print(pvt_df)
#                 Date                                               Machine                                        
# Operation         10         20         30         40         50        10        20        30        40        50
# ID                                                                                                                
# ID1       2018-01-05 2018-01-06 2018-01-10 2018-01-11 2018-01-12  Machine1  Machine2  Machine3  Machine4  Machine5
# ID2       2018-01-10 2018-01-14 2018-01-17        NaT 2018-01-20  Machine1  Machine2  Machine3      None  Machine5
# ID3       2018-01-15        NaT 2018-01-16        NaT 2018-01-17  Machine1      None  Machine3      None  Machine5

# COLUMN WRANGLING
currcols = [o+'_Date' for o in pvt_df.columns.levels[1].astype('str')] + \
           [m+'_Machine' for m in pvt_df.columns.levels[1].astype('str')] 

# FLATTEN HIERARCHY
pvt_df.columns = pvt_df.columns.get_level_values(0)

# ASSIGN COLUMNS
pvt_df.columns = currcols

# RE-ORDER COLUMNS
pvt_df = pvt_df[sorted(currcols)]

# OUTPUT SEMI-COLON DELIMITED CSV
pvt_df.to_csv('Output.csv', sep=";")

# ID;10_Date;10_Machine;20_Date;20_Machine;30_Date;30_Machine;40_Date;40_Machine;50_Date;50_Machine
# ID1;2018-01-05;Machine1;2018-01-06;Machine2;2018-01-10;Machine3;2018-01-11;Machine4;2018-01-12;Machine5
# ID2;2018-01-10;Machine1;2018-01-14;Machine2;2018-01-17;Machine3;;;2018-01-20;Machine5
# ID3;2018-01-15;Machine1;;;2018-01-16;Machine3;;;2018-01-17;Machine5

Upvotes: 1

Related Questions