Reputation: 231
I am trying to train a neural network on CIFAR-10 using keras package in tensorflow. The neural network considered is VGG-16, which I directly borrowed from the official keras models. The definition is:
def cnn_model(nb_classes=10):
# VGG-16 official keras model
img_input= Input(shape=(32,32,3))
vgg_layer= Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
vgg_layer= Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(vgg_layer)
vgg_layer= MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(vgg_layer)
# Block 2
vgg_layer= Conv2D(64, (3, 3), activation='relu', padding='same', name='block2_conv1')(vgg_layer)
vgg_layer= Conv2D(64, (3, 3), activation='relu', padding='same', name='block2_conv2')(vgg_layer)
vgg_layer= MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(vgg_layer)
# Block 3
vgg_layer= Conv2D(128, (3, 3), activation='relu', padding='same', name='block3_conv1')(vgg_layer)
vgg_layer= Conv2D(128, (3, 3), activation='relu', padding='same', name='block3_conv2')(vgg_layer)
vgg_layer= Conv2D(128, (3, 3), activation='relu', padding='same', name='block3_conv3')(vgg_layer)
vgg_layer= MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(vgg_layer)
# Block 4
vgg_layer= Conv2D(256, (3, 3), activation='relu', padding='same', name='block4_conv1')(vgg_layer)
vgg_layer= Conv2D(256, (3, 3), activation='relu', padding='same', name='block4_conv2')(vgg_layer)
vgg_layer= Conv2D(256, (3, 3), activation='relu', padding='same', name='block4_conv3')(vgg_layer)
vgg_layer= MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(vgg_layer)
# Classification block
vgg_layer= Flatten(name='flatten')(vgg_layer)
vgg_layer= Dense(1024, activation='relu', name='fc1')(vgg_layer)
vgg_layer= Dense(1024, activation='relu', name='fc2')(vgg_layer)
vgg_layer= Dense(nb_classes, activation='softmax', name='predictions')(vgg_layer)
return Model(inputs=img_input, outputs=vgg_layer)
However during training, I always get both train and validation accuracy as 0.1 i.e, 10%.
validation accuracy for adv. training of model for epoch 1= 0.1
validation accuracy for adv. training of model for epoch 2= 0.1
validation accuracy for adv. training of model for epoch 3= 0.1
validation accuracy for adv. training of model for epoch 4= 0.1
validation accuracy for adv. training of model for epoch 5= 0.1
As a step towards debugging, whenever I replace with any other model (eg, any simple CNN model) it works perfectly well. This shows that the rest of the script works well.
For example the following CNN model works perfectly well and achieves an accuracy of 75% after 30 epochs.
def cnn_model(nb_classes=10, num_hidden=1024, weight_decay= 0.0001, cap_factor=4):
model=Sequential()
input_shape = (32,32,3)
model.add(Conv2D(32*cap_factor, kernel_size=(3,3), strides=(1,1), kernel_regularizer=keras.regularizers.l2(weight_decay), kernel_initializer="he_normal", activation='relu', padding='same', input_shape=input_shape))
model.add(Conv2D(32*cap_factor, kernel_size=(3,3), strides=(1,1), kernel_regularizer=keras.regularizers.l2(weight_decay), kernel_initializer="he_normal", activation="relu", padding="same"))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(64*cap_factor, kernel_size=(3,3), strides=(1,1), kernel_regularizer=keras.regularizers.l2(weight_decay), kernel_initializer="he_normal", activation="relu", padding="same"))
model.add(Conv2D(64*cap_factor, kernel_size=(3,3), strides=(1,1), kernel_regularizer=keras.regularizers.l2(weight_decay), kernel_initializer="he_normal", activation="relu", padding="same"))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(num_hidden, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes, activation='softmax'))
return model
It appears to me that both of these models are correctly defined. However, one works perfect while the other doesn't learn at all. I also tried writing the VGG model as an Sequential structure i.e, similar to the second one, but it still gave me 10% accuracy.
Even if the model doesn't update any weights, still the "he_normal" initializer will easily able to obtain a much better accuracy than pure chance. It appears that somehow tensorflow computing the output logits from the model which results in accuracy as pure chance.
I will be really helpful if someone can point out my mistake in it.
Upvotes: 1
Views: 639
Reputation: 127
Your 10% corresponds higly with nr of classes = 10. That makes me think that regardless of the training, your answer is always "1" for all categories, what constantly gives you 10% accuracy on 10 classes.
Upvotes: 2