Reputation:
I have been trying to build Mozilla RR on a Linux box at work using CMake. We have a slightly eccentric arrangement where shared libraries are stored on network drives in locations like /sw/external/product-name/linux64_g63.dll/
. Further, I have built some dependencies for the project in $HOME/sw/
. (I am not a sudoer on this box.)
I am rather baffled as how I am supposed to communicate to CMake to look in non-standard directories. So far I have fudged:
PKG_CONFIG_PATH=$HOME/sw/capnproto-0.6.1/lib/pkconfig \
CC=gcc-6.3 CXX=g++-6.3 \
cmake \
-DCMAKE_INSTALL_PREFIX=$HOME/sw/rr-5.1.0 \
-DPYTHON_EXECUTABLE=$HOME/bin/python2 \
-DCMAKE_FIND_ROOT_PATH=$HOME/sw/libseccomp-2.2.3/ \
../src/
Which is obviously not a scalable solution, but it does at least complete the configuration successfully and emit some Makefiles.
If I omit -DCMAKE_FIND_ROOT_PATH=$HOME/sw/libseccomp-2.2.3/
, CMake fails, complaining about a missing libseccomp-2.2.3 dependency. But it works if I do have that definition, telling me that CMake understands where the libseccomp-2.2.3 files are and so will properly add the paths to the necessary compiler invocations.
However, make
does not succeed, because gcc
fails to find a required header file from the libseccomp probject. Examining make VERBOSE=1
, I find that CMake hasn't added -I$HOME/sw/libseccomp-2.2.3/include
to the gcc
invocation.
I feel like this is not the right approach. The other answers I have looked at tell me to modify the CMakeLists.txt file, but surely
Is there a canonical solution to solving this problem? Perhaps a per-site configuration file that will tell CMake how to find libraries and headers, for all projects I build on that site?
Upvotes: 0
Views: 5131
Reputation: 346
Your approach is correct, but cmake is never told to include SECCOMP - see end of this post.
The way cmake can be informed about custom dependency directory depends on how the dependency is searched (i.e. on what is written in CMakeLists.txt).
If dependency is found with one of above-mentioned commands, custom search directories can be easily added with CMAKE_PREFIX_PATH. There is no need to add full path to include, lib or bin - when package root is added find_-command will check appropriate sub-directories. CMAKE_PREFIX_PATH can be also set with environment variable.
Second option is CMAKE_FIND_ROOT_PATH. Every path added to CMAKE_FIND_ROOT_PATH list treated as separate root directory and is searched before system root directory. Note that CMAKE_FIND_ROOT_PATH will be ignored by find_-commands with NO_CMAKE_FIND_ROOT_PATH argument.
Following four variables may be used to tune the usage of CMAKE_FIND_ROOT_PATH:
When use of host system default libraries is undesired setting CMAKE_FIND_ROOT_PATH_MODE_INCLUDE and CMAKE_FIND_ROOT_PATH_MODE_LIBRARY to ONLY is a good practice. If dependency library or header is not found in CMAKE_FIND_ROOT_PATH the configuration will fail. If cmake is allowed search system paths too, it is most likely that errors will occur during linking step or even runtime.
See find_package docs for more details.
All above applies to find_package command too.
find_package can operate in two modes MODULE and CONFIG.
In MODULE mode cmake uses Find[PackageName].cmake script (module) to find dependent package. CMake comes with large number of modules and custom modules can be added with CMAKE_MODULE_PATH variable. Often find-modules can be informed about custom search paths via environment or cmake variables. E.g. FindGTest.cmake searches path stored in GTEST_ROOT variable.
If no find module is available, find_package enters CONFIG mode. If a dependency package provides [PackageName]Config.cmake or [LowercasePackageName]-config.cmake cmake can be easily informed about that package with [PackageName]_DIR variable. Example: CMakeLists.txt contains:
find_package(Qt5)
FindQt5.cmake is not available, but ~/Qt5/Qt5.8/lib/cmake/Qt5Config.cmake file exists, so add
-DQt5_DIR="${HOME}/Qt5/Qt5.8/lib/cmake"
to cmake call.
CMake can use information provided by external pkg-config tool. It is usually done with pkg_check_modules command. Directory used by pkg-config can be customized with PKG_CONFIG_PATH environment variable. According to cmake documentation instead of setting PKG_CONFIG_PATH, custom .pc-files directories can be added via CMAKE_PREFIX_PATH. If CMake version is pre-3.1, PKG_CONFIG_USE_CMAKE_PREFIX_PATH have to be set to TRUE(ON) to enable this feature.
Methods of customizing dependencies search path is defined by CMakeLists.txt content. There is no universal solution here.
And now back to missing SECCOMP headers...
In CMakeLists.txt SECCOMP header is found with
find_path(SECCOMP NAMES "linux/seccomp.h")
but I cannot find any command telling CMake to use the found header. For example:
target_include_directories(<target_name> ${SECCOMP})
or globally:
include_directories(${SECCOMP})
I belive that CMakeLists.txt should be fixed. It is not a platform dependent solution.
Upvotes: 5