Reputation: 1161
I have a dataframe as below, I want to create a dictionary as below:
example:
{'52.00,20.00': [1.5,4.1,3.6,3.1], '49.25,20.00': [0.5,2.1,1,2.1]}
i.e. {'value of A, B': List of avg(A)}
I am new to python pandas, can some one please suggest ?
+-----------+-----------+-----------------+----------------+
| A | B | avg(A) | hour |
+-----------+-----------+-----------------+----------------+
| 52.00 | 20.00 | 1.5 | 1 |
| 52.00 | 20.00 | 4.1 | 14 |
| 52.00 | 20.00 | 3.6 | 15 |
| 52.00 | 20.00 | 3.1 | 16 |
| 49.25 | 20.00 | 0.5 | 0 |
| 49.25 | 20.00 | 2.1 | 1 |
| 49.25 | 20.00 | 1 | 14 |
| 49.25 | 20.00 | 2.1 | 15 |
| 53.75 | 20.00 | 2.66 | 20 |
| 53.75 | 20.00 | 2.66 | 21 |
| 53.75 | 20.00 | 2.66 | 22 |
| 53.75 | 20.00 | 5.07 | 23 |
| 48.00 | 20.00 | 0.97 | 0 |
| 48.00 | 20.00 | 0.97 | 1 |
| 48.00 | 20.00 | 1.57 | 14 |
| 48.00 | 20.00 | 1.57 | 15 |
Upvotes: 1
Views: 61
Reputation: 403110
For two columns, you can manually concatenate (for better performance), and then use as a clause for a groupby
+ apply
operation.
df[['A', 'B']] = df[['A', 'B']].astype(str)
df['avg(A)'].groupby(df['A'] + ',' + df['B']).apply(list).to_dict()
{
"48.0,20.0": [
0.97,
0.97,
1.57,
1.57
],
"49.25,20.0": [
0.5,
2.1,
1.0,
2.1
],
"52.0,20.0": [
1.5,
4.1,
3.6,
3.1
],
"53.75,20.0": [
2.66,
2.66,
2.66,
5.07
]
}
For multiple columns (more than just A
and B
), you can use apply
with str.join
to create a column of comma separated numbers that should generalise to any number of columns.
c = ['A', 'B', ...]
df['avg(A)'].groupby(df[c].astype(str).apply(','.join, 1)).apply(list).to_dict()
Upvotes: 2