umitarabul
umitarabul

Reputation: 1

Different Results of normxcorr2 and normxcorr2_mex

I have images with different rotational orientations. I want to find correct rotation angle using cross-correlation maximization. Since my image set is big, I wanted to speed up normxcorr2 function using the mex file here.

I used the following code to calculate matched_angle:

function [matched_angle, max_corr_vecq, matched_angle_mex, max_corr_vecq_mex] = get_correct_rotation(moving, fixed)

    for theta = 360:-10:10       
        rotated = imrotate(moving, theta,'bicubic','crop');

        corr2d_map = normxcorr2(double(rotated), double(fixed));
        corr2d_map_mex = normxcorr2_mex(double(rotated), double(fixed),'full');

        [max_corr_vec(theta/10), ~] = max(corr2d_map(:));
        [max_corr_vec_mex(theta/10), ~] = max(corr2d_map_mex(:));
    end

    % Interpolate correlation max vector for half degree resolution
    max_corr_vecq = interp1(10:10:360, max_corr_vec, 0.5:0.5:360, 'spline');
    [~, matched_angle] = max(max_corr_vecq);
    matched_angle = 0.5 * matched_angle;

    % Interpolate correlation max vector for half degree resolution
    max_corr_vecq_mex = interp1(10:10:360, max_corr_vec_mex, 0.5:0.5:360, 'spline');
    [~, matched_angle_mex] = max(max_corr_vecq_mex);
    matched_angle_mex = 0.5 * matched_angle_mex;
end

However using those two same images (Moving Template Image & Fixed Reference Image) for two different normxcorr2 & normxcorr2_mex gives totally different results.

plot(0.5:0.5:360, max_corr_vecq, 'linewidth',2); hold on;
plot(0.5:0.5:360, max_corr_vecq_mex, 'linewidth',2);
legend({'MATLAB Built-in', 'MEX'});
set(gca, 'FontSize', 14, 'FontWeight', 'bold');

See Result Plot.

Does anyone has an idea what is going on? I could not found any entry regarding the accuracy of that mex file. And according to the author:

the following are equivalent:

  result = normxcorr2_mex(template, image, 'full'); 

AND

  result = normxcorr2(template, image);

except that normxcorr2_mex has 0's in the 'invalid' area along the boundary

which should not be problem in my case. Since I am only checking the max correlation value.

Upvotes: 0

Views: 1174

Answers (2)

thylacine
thylacine

Reputation: 21

Since my previous answer, I have found the normcorr2_mex library to be consistently slower (than MATLAB) and incorrect in all of my use cases.

As I really needed a C++ implementation (that I could verify with MATLAB), I created my own. The code is listed here:


/* normxcorr2_mex.cpp   
 *
 *  A MATLAB-mex wrapper around a C/C++ implementation of the Normalised Cross Correlation algorithm described 
 * by @dafnahaktana in https://stackoverflow.com/questions/44591037/speed-up-calculation-of-maximum-of-normxcorr2.
 *
 *  This module uses the 'integral image' data structure described in the posted MATLAB/Octave code (based upon the
 * original Industrial Light & Magic paper at http://scribblethink.org/Work/nvisionInterface/nip.pdf), but replaces 
 * the "naive" correlation step with a Fourier transform implementation for larger template sizes.
 *
 *  Daniel Eaton released a MATLAB-mex library (http://www.cs.ubc.ca/research/deaton/remarks_ncc.html) with the 
 * same function name as this one in 2013.  Indeed, I acknowledge [and flatteringly plagiarise] his interface and 
 * naming convention.  Unfortunaly, I was unable to duplicate the speed (wrt MATLABs normxcorr2) improvements he
 * claimed with the image sizes I required.  Curiously, I also observed different results using his library compared
 * with MATLABs built-in function (despite being claimed to be identical).  This was also noted by others here:
 * https://stackoverflow.com/questions/48641648/different-results-of-normxcorr2-and-normxcorr2-mex.  This module
 * does match normxcorr2 on both the MATLAB R2016b and R2017a/b versions tested, using the (accompanying) test script.
 * Like Daniel's module, however, this function returns only the 'valid' region of correlation values, i.e. it 
 * doesn't pad the output array to match the input image size.  
 *
 *  This function is called via:
 *                                 NCC = normxcorr2_mex (TEMPLATE, A);
 *  Where:  
 *    TEMPLATE - The (double precision) matrix to correlate with A. 
 *    A        - (Double precision) input matrix for correlation with the TEMPLATE.  Note size(A) > size(TEMPLATE).
 *    NCC      - is the computed normalised cross correlation coefficients of the matrices TEMPLATE and A.
 *               The size of the correlation coefficient matrix is given as:
 * 
 *                              size(NCC) = [(Ar - TEMPLATEr + 1), (Ac - TEMPLATEc + 1)]  ; where:
 * 
 *                Ar, Ac and TEMPLATEr, TEMPLATEc are the number of (rows, cols) of A and TEMPLATE respectively.
 *
 *  This module requires the Eigen C++ library (http://eigen.tuxfamily.org/index.php?title=Main_Page) for compilation
 * and may be compiled within MATLAB via:
 *
 *                                  mex -I'[Path to]\eigen-3.3.5' normxcorr2_mex.cpp
 *
 *  Since NCC is such a computationally intensive task, this module may be linked against the openMP library to exploit a
 * pool of worker threads and distribute some of the embarrassingly parellel operations within across a number of CPU cores.
 * Only rudimentary use is made of the library, but the following compilation option provides speedups generally 
 * exceeding 50%:
 *
 *    mex -I'[Path to]\eigen-3.3.5' CXXFLAGS="$CXXFLAGS -fopenmp" LDFLAGS="$LDFLAGS -fopenmp" normxcorr2_mex.cpp
 *
 *
 *  You are free to do with this code as you wish.  For this reason, it is released under the UNLICENSE model:
 * 
 *                   This is free and unencumbered software released into the public domain.
 *                   
 *                   Anyone is free to copy, modify, publish, use, compile, sell, or
 *                   distribute this software, either in source code form or as a compiled
 *                   binary, for any purpose, commercial or non-commercial, and by any
 *                   means.
 *                   
 *                   In jurisdictions that recognize copyright laws, the author or authors
 *                   of this software dedicate any and all copyright interest in the
 *                   software to the public domain. We make this dedication for the benefit
 *                   of the public at large and to the detriment of our heirs and
 *                   successors. We intend this dedication to be an overt act of
 *                   relinquishment in perpetuity of all present and future rights to this
 *                   software under copyright law.
 *                   
 *                   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *                   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *                   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 *                   IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 *                   OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 *                   ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 *                   OTHER DEALINGS IN THE SOFTWARE.
 *                   
 *                   For more information, please refer to <http://unlicense.org/>
 */

#include "mex.h"
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <cmath>
#include <complex>
#include <iostream>
#include <Eigen/Core>
#include <unsupported/Eigen/FFT> 

using namespace Eigen;

// If we're compiled/linked with openMP, turn off Eigen's parallelisation

#ifdef _OPENMP
   #define EIGEN_DONT_PARALLELIZE
   #define EIGEN_NO_DEBUG
#endif



// For very small input templates, performing the raw 2D correlation in the spatial domain may be faster than
// the transform domain (due to the overhead that the latter involves).  The decision which approach to use is 
// made at runtime by comparing the size (=rows*cols) of the input TEMPLATE matrix with the following constant.
// Feel free to experiment with this value in your own application!

#define TEMPLATE_SIZE_THRESHOLD 401


// 2D Cross-correlation performed via the "naive approach" (laborious spatial domain convolution).

ArrayXXd spatialXcorr (const Ref<const ArrayXXd>& img, const Ref<const ArrayXXd>& templ)
  {
  int32_t r, c;
  ArrayXXd xcorr2(img.rows()-templ.rows()+1, img.cols()-templ.cols()+1);

  for (r=0; r<(img.rows()-templ.rows()+1); r++)
     for (c=0; c<(img.cols()-templ.cols()+1); c++)
         xcorr2(r,c) = (templ*img.block(r,c,templ.rows(),templ.cols())).sum();

  return(xcorr2);
  }

// 2D Cross-correlation performed via Fourier transform 

ArrayXXd transformXcorr (const Ref<const ArrayXXd>& img, const Ref<const ArrayXXd>& templ)
  {
  ArrayXXd xcorr2(img.rows()-templ.rows()+1, img.cols()-templ.cols()+1);

  // Copy the input arrays into a matrix the next power-of-2 up in size
  int32_t nextPow2r = (int32_t)(pow(2.0, round(0.5+log((double)(img.rows()))/log(2.0))));
  int32_t nextPow2c = (int32_t)(pow(2.0, round(0.5+log((double)(img.cols()))/log(2.0))));
  MatrixXd imgPwr2   = MatrixXd::Zero(nextPow2r, nextPow2c);
  MatrixXd templPwr2 = MatrixXd::Zero(nextPow2r, nextPow2c);

  // A -> copied to top-left corner. 
  // TEMPLATE is rotated 180 degrees to account for rotation/flip performed during convolution.
  imgPwr2.block(0, 0, img.rows(), img.cols()) = img.matrix();
  templPwr2.block(0, 0, templ.rows(), templ.cols()) = (templ.matrix().colwise().reverse()).rowwise().reverse();

  // Perform 2D FFTs via sequential 1D transforms (Rows first, then columns)
  MatrixXcd imgFT(nextPow2r, nextPow2c), templFT(nextPow2r, nextPow2c), prodFT(nextPow2r, nextPow2c);

  // Rows first...
  #ifdef _OPENMP                                          // If using parallel threads, then each thread
                                                           // must have it's own copy of the eigenFFT plan.
     #pragma omp parallel for schedule(dynamic)            
     for (int32_t r=0; r<nextPow2r; r++) {                 // This is unnecesary for single-threaded execution as
                                                           // each evaluation of the FFT is identical in length 
        VectorXcd rowVec(nextPow2c);                       // and data type.
        FFT<double> eigenFFT;
                                                           // The creation of the plan is computationally expensive
  #else                                                    // and so we do it once, outside of the loop in the single
                                                           // threaded case (to reduce the run time by a factor > 2).
     VectorXcd rowVec(nextPow2c);
     FFT<double> eigenFFT;
     for (int32_t r=0; r<nextPow2r; r++) {

  #endif     
        eigenFFT.fwd(rowVec, imgPwr2.row(r));
        imgFT.row(r) = rowVec;
        eigenFFT.fwd(rowVec, templPwr2.row(r));
        templFT.row(r) = rowVec; 
        }

  // ...then columns.
  #ifdef _OPENMP

     #pragma omp parallel for schedule(dynamic)
     for (int32_t c=0; c<nextPow2c; c++) {

        VectorXcd colVec(nextPow2r);
        FFT<double> eigenFFT;

  #else 

     VectorXcd colVec(nextPow2r);
     for (int32_t c=0; c<nextPow2c; c++) {

  #endif     
        eigenFFT.fwd(colVec, imgFT.col(c));
        imgFT.col(c) = colVec;
        eigenFFT.fwd(colVec, templFT.col(c));
        templFT.col(c) = colVec;
        }  

  // Mutliply complex Fourier domain matricies 
  prodFT = imgFT.cwiseProduct(templFT);

  // Transform (complex) Fourier product back -> (real) spatial domain (2D IFFT). 
  // Reuse templPwr2 as the output variable for efficiency.

  // Rows first (again)...
  #ifdef _OPENMP
     #pragma omp parallel for schedule(dynamic)
     for (int32_t r=0; r<nextPow2r; r++) {

        FFT<double> eigenFFT;  
        VectorXcd rowVec(nextPow2c);

  #else
     for (int32_t r=0; r<nextPow2r; r++) {
  #endif
        eigenFFT.inv(rowVec, prodFT.row(r));
        prodFT.row(r) = rowVec;
        }

  // ...and lastly, columns.
  #ifdef _OPENMP
     #pragma omp parallel for schedule(dynamic)
     for (int32_t c=0; c<nextPow2c; c++) {

        FFT<double> eigenFFT;  
        VectorXcd colVec(nextPow2r);

  #else
     for (int32_t c=0; c<nextPow2c; c++) {
  #endif    
        eigenFFT.inv(colVec, prodFT.col(c));
        templPwr2.col(c) = colVec.real();
        }

  // Extract the valid region of correlation coefficients
  xcorr2 = templPwr2.array().block(templ.rows()-1, templ.cols()-1, img.rows()-templ.rows()+1, img.cols()-templ.cols()+1);
  return(xcorr2);
  }




// Normalised cross-correlation top-level function

ArrayXXd normxcorr2 (const Ref<const ArrayXXd>& templ, const Ref<const ArrayXXd>& img)
  {
  ArrayXXd templZMean(templ.rows(), templ.cols()); 
  ArrayXXd scalingCoeffs(img.rows() - templ.rows() +1, img.cols() - templ.cols() +1);
  ArrayXXd normxcorr(img.rows()-templ.rows()+1, img.cols()-templ.cols()+1);
  ArrayXXd integralImg(img.rows()+2, img.cols()+2), integralImgSq(img.rows()+2, img.cols()+2);
  ArrayXXd windowMeanA = ArrayXXd::Zero(img.rows() - templ.rows() +1, img.cols() - templ.cols() +1);
  ArrayXXd windowMeanASq = ArrayXXd::Zero(img.rows() - templ.rows() +1, img.cols() - templ.cols() +1);

  // Calculate the standard deviation of the TEMPLATE
  double templSizeRcp = 1.0/(double)(templ.rows()*templ.cols());
  templZMean = templ-templ.mean();
  double templateStd = sqrt((templZMean.pow(2)).sum()*templSizeRcp);

  // Compute mean and standard deviation of input matrix A over the template window size. Firsly...
  // Construct array for computing the integral image(s) + zero pad the edges to avoid boundary issues
  integralImg.block(0, 0, 1, integralImg.cols()) = ArrayXXd::Zero(1, integralImg.cols());
  integralImg.block(0, 0, integralImg.rows(), 1) = ArrayXXd::Zero(integralImg.rows(), 1);
  integralImg.block(0, integralImg.cols()-1, integralImg.rows(), 1) = ArrayXXd::Zero(integralImg.rows(), 1);
  integralImg.block(integralImg.rows()-1, 0, 1, integralImg.cols()) = ArrayXXd::Zero(1, integralImg.cols());

  integralImgSq.block(0, 0, 1, integralImgSq.cols()) = ArrayXXd::Zero(1, integralImgSq.cols());
  integralImgSq.block(0, 0, integralImgSq.rows(), 1) = ArrayXXd::Zero(integralImgSq.rows(), 1);
  integralImgSq.block(0, integralImgSq.cols()-1, integralImgSq.rows(), 1) = ArrayXXd::Zero(integralImgSq.rows(), 1);
  integralImgSq.block(integralImgSq.rows()-1, 0, 1, integralImgSq.cols()) = ArrayXXd::Zero(1, integralImgSq.cols());

  // Calculate cumulative sum.  Along the length of each row first...
  for (int32_t r=0; r<img.rows(); r++) {
     double sum = 0.0;
     double sumSq = 0.0;
     for (int32_t c=0; c<img.cols(); c++) {
        sum += img(r,c);
        sumSq += (img(r,c)*img(r,c));
        integralImg(r+1, c+1) = sum;
        integralImgSq(r+1, c+1) = sumSq;
        }
     }
  // ...and then down each column.
  for (int32_t c=1; c<=img.cols(); c++) {
     double sum = 0.0;
     double sumSq = 0.0;
     for (int32_t r=1; r<=img.rows(); r++) {
        sum += integralImg(r,c);
        sumSq += integralImgSq(r,c);
        integralImg(r,c) = sum;
        integralImgSq(r,c) = sumSq;
        }
     }

  // Determine start/finish indexes for the boundaries of the summed area
  int32_t rStart = (int32_t)(0.5 + templ.rows()/2.0);
  int32_t rEnd = img.rows() - rStart + (templ.rows() % 2);
  int32_t cStart = (int32_t)(0.5 + templ.cols()/2.0);
  int32_t cEnd = img.cols() - cStart + (templ.cols() % 2);

  // Evaluate the sum of intensities
  windowMeanA += ( integralImg.block(templ.rows(), templ.cols(), rEnd-rStart+1, cEnd-cStart+1) \
               - integralImg.block(templ.rows(), 0, rEnd-rStart+1, cEnd-cStart+1) \
               - integralImg.block(0, templ.cols(), rEnd-rStart+1, cEnd-cStart+1) \
               + integralImg.block(0, 0, rEnd-rStart+1, cEnd-cStart+1) )*templSizeRcp;

  // Evaluate the sum of intensities (squared)
  windowMeanASq += ( integralImgSq.block(templ.rows(), templ.cols(), rEnd-rStart+1, cEnd-cStart+1) \
                - integralImgSq.block(templ.rows(), 0, rEnd-rStart+1, cEnd-cStart+1) \
                - integralImgSq.block(0, templ.cols(), rEnd-rStart+1, cEnd-cStart+1) \
                + integralImgSq.block(0, 0, rEnd-rStart+1, cEnd-cStart+1) )*templSizeRcp;

  // Calculate the standard deviation (squared) of A over the template size window
  // Standard deviation = sqrt(windowMeanASq - windowMeanA.square());
  scalingCoeffs = (windowMeanASq - windowMeanA.square());

  // Amalgamate the element-by-element test/square root with other coefficients scaling for efficiency
  for (int32_t r=0; r<scalingCoeffs.rows(); r++) 
     for (int32_t c=0; c<scalingCoeffs.cols(); c++) 
        if (scalingCoeffs(r,c) > 0)
           scalingCoeffs(r,c) = templSizeRcp/(templateStd*sqrt(scalingCoeffs(r,c)));
        else
           scalingCoeffs(r,c) = std::numeric_limits<double>::quiet_NaN();

  // Decide which 2D correlation approach to use (transform or spatial domain) 
  if ((templ.rows()*templ.cols()) > TEMPLATE_SIZE_THRESHOLD)
     normxcorr = scalingCoeffs*transformXcorr(img, templZMean);
  else 
     normxcorr = scalingCoeffs*spatialXcorr(img, templZMean);

  return(normxcorr);
  }



// ******************** Minimal MEX wrapper ********************

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
  {
  // Check the number of arguments 
  if (nrhs != 2)
     mexErrMsgIdAndTxt("MATLAB:normxcorr2_mex", "Usage: NCC = normxcorr2_mex (TEMPLATE, A);"); 

  // Verify input array sizes
  size_t rowsTempl = mxGetM(prhs[0]);
  size_t colsTempl = mxGetN(prhs[0]);
  size_t rowsA = mxGetM(prhs[1]);
  size_t colsA = mxGetN(prhs[1]);

  if ((rowsA <= rowsTempl) || (colsA <= colsTempl))
     mexErrMsgIdAndTxt("MATLAB:normxcorr2_mex", "Size of TEMPLATE must be less than input matrix A."); 

  #ifdef _OPENMP
     // Required for Eigen versions < 3.3 and for *some* non-compliant C++11 compilers. 
     // (Warn Eigen our application might be calling it from multiple threads). 
     initParallel();
  #endif

  // Perform correlation
  ArrayXXd xcorr(rowsA-rowsTempl+1, colsA-colsTempl+1);
  xcorr = normxcorr2 (Map<ArrayXXd>(mxGetPr(prhs[0]), rowsTempl, colsTempl), Map<ArrayXXd>(mxGetPr(prhs[1]), rowsA, colsA));

  // Return data to MATLAB
  plhs[0] = mxCreateDoubleMatrix(rowsA-rowsTempl+1, colsA-colsTempl+1, mxREAL);
  Map<ArrayXXd> (mxGetPr(plhs[0]), xcorr.rows(), xcorr.cols()) = xcorr;

  return;
  }

As per the comments in the header, save the file to normxcorr2_mex.cpp and compile with:

  • mex -I'[Path to]\eigen-3.3.5' normxcorr2_mex.cpp for single-threaded operation, or with
  • mex -I'[Path to]\eigen-3.3.5' CXXFLAGS="$CXXFLAGS -fopenmp" LDFLAGS="$LDFLAGS -fopenmp" normxcorr2_mex.cpp for multi-threaded openMP support.

The timing and correct operation of the code can be verified with the following MATLAB script:


% testHarness.m  
%
% Verify the results of the compiled normxcorr2_mex() function against
% MATLABs inbuilt normxcorr2() function.  This takes aaaaages to run!

%% Simulation/comparison parameters

nRunsA = 50;              % Number of trials for accuracy comparison
nRunsT = 30;              % Number of repetitions for execution time detemination
nStepsT = 50;             % Number of input matrix size steps to take in execution time measurement 

maxImSize = [1343 1745];  % (Deliberately non-round-number) maximum image size for tests 
maxTemplSize = [248 379]; % Maximum image template size

%% Accuracy comparison

sumSqErr = zeros(1, nRunsA);
fprintf(2, 'Accuracy comparison\n');

for nRun = 1:nRunsA

    fprintf('Run %d (of %d)\n', nRun, nRunsA);

    % Create input images/templates of random content and size
    randSizeScale = 0.02 + 0.98*rand(1, 2);
    img = rand(round(maxImSize.*randSizeScale));
    templ = rand(round(maxTemplSize.*randSizeScale));

    % MATLABs inbuilt function 
    resultMatPadded = normxcorr2(templ, img);
    % Remove unwanted padding
    [rTempl, cTempl] = size(templ);
    [rImg, cImg] = size(img);
    resultMat = resultMatPadded(rTempl:rImg, cTempl:cImg);

    % MEX function
    resultMex = normxcorr2_mex(templ, img);

    % Compare results
    sumSqErr(nRun) = sum(sum( (resultMat-resultMex).^2 ));

end

figure;
plot(sumSqErr);
title('Accuracy comparison between MATLAB and MEX normxcorr2');
xlabel('Run #');
ylabel('\Sigma |MATLAB-MEX|^2');
grid on;

%% Timing comparison

avMatT = zeros(1, nStepsT);
avMexT = zeros(1, nStepsT);
fprintf(2, 'Timing comparison\n');

for stp = 1:nStepsT

    fprintf('Run %d (of %d)\n', stp, nStepsT);

    % Create input images/templates of random content and progressively larger size
    img = rand(round(maxImSize*stp/nStepsT));
    templ = rand(round(maxTemplSize.*stp/nStepsT));

    % MATLABs function
    tStart = tic;
    for exec = 1:nRunsT
        dummy =  normxcorr2(templ, img);
    end
    avMatT(stp) = toc(tStart)/nRunsT;

    % MEX function
    tStart = tic;
    for exec = 1:nRunsT
        dummy =  normxcorr2_mex(templ, img);
    end
    avMexT(stp) = toc(tStart)/nRunsT;

end

figure;
plot((1:nStepsT)/(0.01*nStepsT), avMatT, 'rx-', (1:nStepsT)/(0.01*nStepsT), avMexT, 'bo-');
title('Execution time comparison between MATLAB and MEX normxcorr2');
xlabel('Input array size [% of maximum]');
ylabel('Evaluation time [s]');
legend('MATLAB', 'MEX');
grid on;

The above C++/mex implementation and MATLAB's inbuilt normxcorr2 function agree to a level approaching the limits of the underlying double-precision data type. It turns out that the recent MATLAB normxcorr2 is hard to beat in speed though - even when using openMP - as this comparative timing plot shows when run on my elderly i7-980 CPU.

Upvotes: 2

thylacine
thylacine

Reputation: 21

Unfortunately I don't have an explanation, but can confirm the issue appears to be with the library and not your implementation. I had issues building the normxcorr2_mex library with the MinGW64 compiler under windows which made me wary of possible variations between builds. Builds under both Debian Linux and Windows exhibit the same (incorrect) behaviour compared to MATLAB's built-in normxcorr2 function, as shown in the plot included here.

To assist anyone else building the library under Windows, I had to coerce the C++ compiler with the following command line:

mex -O CXXFLAGS="$CXXFLAGS -std=c++03 -fpermissive" normxcorr2_mex.cpp cv_src/*.cpp

Incidentally, I also found the mex implementation to be an order of magnitude slower than MATLABs!

Upvotes: -1

Related Questions