Reputation: 95
I have two CSV files,
a1.csv
city,state,link
Aguila,Arizona,https://www.glendaleaz.com/planning/documents/AppendixAZONING.pdf
AkChin,Arizona,http://www.maricopa-az.gov/zoningcode/wp-content/uploads/2014/05/Zoning-Code-Rewrite-Public-Review-Draft-3-Tracked-Edits-lowres1.pdf
Aguila,Arizona,http://www.co.apache.az.us/planning-and-zoning-division/zoning-ordinances/
a2.csv
city,state,link
Aguila,Arizona,http://www.co.apache.az.us
I want to get the difference.
Here is my attempt:
import pandas as pd
a = pd.read_csv('a1.csv')
b = pd.read_csv('a2.csv')
mask = a.isin(b.to_dict(orient='list'))
# Reverse the mask and remove null rows.
# Upside is that index of original rows that
# are now gone are preserved (see result).
c = a[~mask].dropna()
print c
Expected Output:
city,state,link
Aguila,Arizona,https://www.glendaleaz.com/planning/documents/AppendixAZONING.pdf
AkChin,Arizona,http://www.maricopa-az.gov/zoningcode/wp-content/uploads/2014/05/Zoning-Code-Rewrite-Public-Review-Draft-3-Tracked-Edits-lowres1.pdf
But I am getting an error:
Empty DataFrame
Columns: [city, state, link]
Index: []**
I want to check based on the first two rows, then if they are the same, remove it off.
Upvotes: 3
Views: 11206
Reputation: 38
First, concatenate the DataFrames, then drop the duplicates while still keeping the first one. Then reset the index to keep it consistent.
import pandas as pd
a = pd.read_csv('a1.csv')
b = pd.read_csv('a2.csv')
c = pd.concat([a,b], axis=0)
c.drop_duplicates(keep='first', inplace=True) # Set keep to False if you don't want any
# of the duplicates at all
c.reset_index(drop=True, inplace=True)
print(c)
Upvotes: 2
Reputation: 9008
You can use pandas
to read in two files, join them and remove all duplicate rows:
import pandas as pd
a = pd.read_csv('a1.csv')
b = pd.read_csv('a2.csv')
ab = pd.concat([a,b], axis=0)
ab.drop_duplicates(keep=False)
Reference: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.drop_duplicates.html
Upvotes: 5